Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2006
|
vol. 53
|
issue 2
395-397
EN
A novel polypeptide, velvet antler polypeptide (VAPPs), having a stimulary effect on proliferation of some cell was isolated from the velvet antler of sika deer (Cervus nippon Temminck). This polypeptide consists of a single chain of 32 amino-acid residues VLSAT DKTNV LAAWG KVGGN APAFG AEALE RM. VAPPs showed marked stimulary effect on rat epidermal cells and NIH3T3 cell line (dose range from 10-40 mg·L-1 and 5-80 mg·L-1, respectively).
EN
In this study, the phosphors (Sr1−x , Znx)0.9(Al2−y , By)O4 doped 10 mol % Eu2+, were prepared by combustion method as the fluorescent material for white light emitting diodes (WLEDs), performing as a light source. The luminescent properties were investigated by changing the combustion temperature, the boron concentration, and the ratio of Sr to Zn. The luminescence, crystallinity and particle morphology were investigated by using a luminescence spectrometer, X-ray diffractometer (XRD) and transmission electron microscopy (TEM), respectively. The highest intensity of Sr0.9(Al2−y , By)O4: Eu0.12+ phosphor was achieved when the combustion temperature was 600° and the concentration of B3+ was 8 mol % of the aluminate. A new blue emission was observed when the high Zn concentration (x ⩾ 0.8), and this blue emission disappeared with the Zn concentration became lower than 0.8. The combustion method synthesized phosphor (Sr0.6, Zn0.4)0.9(Al1.92, B0.08)O4: Eu0.12+ showed 3.3 times improved emission intensity compared with that of the Sr0.9(Al1.92, B0.08)O4:Eu0.12+ phosphor under λex = 390 nm.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.