Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 3
325-329
EN
Myogenic factor 3 (myf - 3) and myogenic factor 5 (myf - 5) are the products of genes: MYOD1 (MYF3) and MYF5, respectively, which belong to the MyoD family. These transcription factors control the processes of myogenesis. The fragments of both the genes comprising exons and promoters were amplified and sequenced. In the 5'UTR region of gene MYOD1, the G302A transition was identified and it is not recognized by any restriction endonuclease. In the promoter region of gene MYF5 we identified three mutations at positions: A65C (PCR-RFLP/AciI); C580T (PCR-RFLP/FokI) and C613T (PCR-RFLP/HinPI). Mutations C580T and C613T were characteristic for Pietrain ? (Polish Large White ? Polish Landrace) crossbred pigs named Torhyb. The C2931T transition, which is not recognized by any restriction enzyme, was identified in exon 3 of gene MYF5. This mutation results in a change of the amino acid sequence (Leu?Pro). The frequency of particular genotypes at the MYOD1 and MYF5 loci proved to be dependent on pig breed. However, Duroc pigs were monomorphic at all the SNPs presented in this study. These SNPs might be analyzed in a further study as probably influencing carcass meatiness.
EN
Myogenic factor 5 (myf-5) is the product of the MYF5 gene, belonging to the MyoD family. This transcription factor participates in the control of myogenesis. We identified 3 new mutations in the promoter region of the gene: A65C, C580T and C613T. The aim of this study was to evaluate the influence of the A65C transversion on gene expression. The analysis was conducted on 15 Polish Large White gilts. The relative content of MYF5 mRNA in m. longissimus dorsi did not differ significantly across MYF5 genotypes (AA, AC, CC). This result suggests that the A65C transversion may not play an important role in the expression of the MYF5 gene in analysed adult muscle but it abolishes a putative binding site for two transcription factors (CDP and HSF1) and creates such a site for Sp1.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.