Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Protein C-mannosylation: Facts and questions.

100%
|
2000
|
vol. 47
|
issue 3
781-789
EN
Among the posttranslational modifications of proteins, glycosylation is probably the most abundant one. Two main types of protein glycosylation have been known for several years, namely N-glycosylation and O-glycosylation. Their biochemical properties, structure and biosynthesis, have been described extensively. Their biological functions are also known for a number of proteins, although in many cases the function remains speculative despite continuous efforts. A few years ago, a new type of protein glycosylation was found, which is different from the above-mentioned ones. It was called C-glycosylation, since the sugar is linked to the protein through a carbon-carbon bond. This article reviews the biochemistry of C-glycosylation, the biosynthetic pathway and structural requirements. Possible biological functions of this modification are also discussed.
EN
So far only little data have been available concerning the eliciting capacity of well defined glycan molecules isolated from plant pathogens. This study brings new information about changes in plant cells caused by fungal pathogens. Sugar fractions derived from glycoproteins isolated from the fungus Fusarium sp. M7-1 have been tested here as signaling molecules. The ability of three O-glycan fractions (named in this work inducer I, II, III) to trigger responses in Rubus protoplasts has been examined. It was found that inducer III was the most efficient as it elicited changes in the levels of phenylpropanoid pathway intermediates in relation to phenylalanine-ammonia lyase (PAL) activation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.