Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 125
|
issue 4A
A-174-A-178
EN
In the paper, the energy harvesting from vibration of two-degree-of-freedom mechanical system is analyzed. The considered system consists of two mass linked in series by means of springs and dampers. The kinematic excitation of the system was assumed. The energy conversion system was placed in the suspension of lower mass. As a result of the analysis, the methods to increase the energy harvesting from vibration were proposed. The laboratory stand has been built and a series of measurements performed. Results of numerical simulations and measurements are presented in graphs.
EN
The paper presents results of laboratory investigations of a vibrating three-layer cantilever beam with magnetorheological fluid. The goal of the study was to determine changes of the acoustic field around the vibrating beam caused by modifications of the magnetorheological fluid properties. The experimental studies have been carried out on a dedicated measuring stand. The construction of the measuring stand allows fixing one end of the beam in a holder attached to the moving part of the electrodynamic shaker. The magnetic field is produced by an external electromagnet. During the measurements the beam displacements and the acoustic pressure have been simultaneously registered. Frequency analysis of the registered signals has been carried out in 1/12 octave bands near the second natural frequency of the beam. The results reveal that the acoustic signal emitted by the vibrating beam decreases when the magnetic field is applied.
4
Content available remote

Active Suspension Based on Low Dynamic Stiffness

81%
EN
The paper presents an active vibration control system based on low dynamic stiffness of suspension. Using a simple two degrees-of-freedom system a few basic concepts of lowering suspension dynamic stiffness are presented. Through reducing the dynamic component of force between the protected subsystem and remaining part of the system, considerable vibration suppression is achieved. Linear and nonlinear algorithms are proposed. In the case of nonlinear control algorithm, the sufficient link between the protected subsystem and the remaining part of the system necessary to change the position of the protected subsystem is maintained. Experiments described in the paper cover two different cases. In the first case, the suspension operated as the passive suspension, while in the second case, the active reduction system was included. The results are presented graphically.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.