In this paper we study the current-induced spin polarization in a two-dimensional electron gas, known also as the Edelstein effect. Compared to previous treatments, we consider both the Rashba and Dresselhaus spin-orbit interaction as well as the spin-orbit interaction from impurity scattering. In evaluating the Kubo formula for the spin polarization response to an applied electric field, we explicitly take into account the side-jump and skew-scattering effects. We show that the inclusion of side-jump and skew-scattering modifies the expression of the current-induced spin polarization.
We provide a heuristic derivation of the "Inverse Edelstein Effect" (IEE), in which a non-equilibrium spin accumulation in the plane of a two-dimensional (interfacial) electron gas drives an electric current perpendicular to its own direction. The drift-diffusion equations that govern the effect are derived and applied to the interpretation of recent experiments. A brief analysis based on the Kubo formula shows that the result is valid also outside the diffusive regime, i.e. when spin and momentum relaxation become comparable.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.