Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Optical Properties of Semiladder Polymer Foils

100%
EN
Optical transmission of amorphous polyimidazopyrrolone foils (pyrrons) were investigated in the spectral range 200-3300nm. The investigated materials exhibit a high transmission level (up to 85%) in a wide range from about 500 to 2750nm. The short wavelength edge of transmission depends on the pyrron chemical structure being different for ether-, amide- and ester bridges. When analysing the experimental data, we applied the approach used for amorphous materials in order to determine the electronic structure parameters which may be related to the influence of polyimidazopyrrolone bridge structure and structural disorder on the optical properties and probable electronic transitions.
EN
The goal of this work was to investigate the influence of rare-earth ions such as Nd^{3+} and Er^{3+} on the optical properties of tellurite glass of the TeO_2-WO_3-PbO-La_2O_3 system. The optical studies of the glasses comprised spectrophotometry (reflectance and transmittance) and spectroscopic ellipsometry. The spectrophotometric measurements yield a number of narrow absorption bands which correspond to characteristic transitions between the ground- and consecutive excited states of rare-earth ions. From ellipsometric studies, in turn, the dispersion of the refraction coefficient has been obtained which appears to be practically the same for the tellurite glass matrix and the matrix doped with Nd^{3+} and Er^{3+} ions.
EN
Herein we report results of studies on stability of diodes based on organic semiconductors such as poly (3-hexylthiophene) (P3HT) and soluble derivative of polyazomethine poly(1,4-(2,5-bisoctyloxy phenylenemethylidynenitrilo)-1,4-phenylenenitrilomethylidyne), (BOO-PPI). Both polymers were deposited on glass/ITO substrate with or without covering with blocking layer: poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) and finished with Al back electrode. Prepared devices were studied by monitoring their electrical conductivity under nitrogen atmosphere and ambient air conditions. Under nitrogen atmosphere a marked influence of presence of the blocking layer on the diodes electrical conductivity was revealed. The P3HT diodes prepared without PEDOT:PSS thin film shown quick degradation, whereas presence of these layers stabilizes electrical conductivity in these devices. Inversely, the PPI based diodes without the PEDOT:PSS revealed stable conducting properties, while corresponding diodes with PEDOT:PSS layer showed degradation traces of their conducting properties.
EN
In this work, we study the influence of the PEDOT to PSS ratio on the optical properties of PEDOT:PSS thin solid films using spectroscopic ellipsometry and UV-vis spectrometry. In the data analysis, we develop a consisted composition dependent optical model of PEDOT:PSS. This enabled us to account for contributions from PSS part within the Tauc-Lorentz optical model and from PEDOT part within the Drude-Lorentz optical model. Moreover, we relate the optical properties of PEDOT:PSS thin solid films to their electrical specific conductivities in the frame of the generalized effective medium theory. Determined in this manner electrical conductivities of five commercially available water dispersions of PEDOT:PSS are compared with their nominal values.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.