Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the present study we show FISH localization of 4 porcine BAC clones harbouring potential candidate genes for fatness traits: DGAT1 (SSC4p15), PPARA (SSC5p15), ADIPOR1 (SSC10p13) and CREB (SSC15q24). Until now the CREB and ADIPOR1 genes are considered to be monomorphic, DGAT1 is highly polymorphic, while for the PPARA gene only 1 SNP was identified. Assignment of the studied genes in relation to QTL chromosome regions for meat quality in pig chromosomes SSC4, SSC5, SSC10 and SSC15 is discussed.
EN
Remarkable thermomechanical and electrical properties of silicon carbide (SiC) make this material very attractive for high-temperature, high-power, and high-frequency applications. Because of very low values of diffusion coefficient of most impurities in SiC, ion implantation is the best method to selectively introduce dopants over well-defined depths in SiC. Aluminium is commonly used for creating p-type regions in SiC. However, post-implantation radiation damage, which strongly deteriorates required electric properties of the implanted layers, is difficult to anneal even at high temperatures because of remaining residual damage. Therefore implantation at elevated target temperatures (hot implantation) is nowadays an accepted method to decrease the level of the residual radiation damage by avoiding ion beam-induced amorphization. The main objective of this study is to compare the results of the Rutherford backscattering spectroscopy with channeling and micro-Raman spectroscopy investigations of room temperature and 500°C Al^{+} ion implantation-induced damage in 6H-SiC and its removal by high temperature (up to 1600°C) thermal annealing.
EN
In the present study we show FISH localization of 4 porcine BAC clones harbouring potential candidate genes for fatness traits: DGAT1 (SSC4p15), PPARA (SSC5p15), ADIPOR1 (SSC10p13) and CREB (SSC15q24). Until now the CREB and ADIPOR1 genes are considered to be monomorphic, DGAT1 is highly polymorphic, while for the PPARA gene only 1 SNP was identified. Assignment of the studied genes in relation to QTL chromosome regions for meat quality in pig chromosomes SSC4, SSC5, SSC10 and SSC15 is discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.