Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 13

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this paper the experimental investigations of the YBa_2Cu_3O_{7-δ} single crystal, using atomic force microscopy and magnetic force microscopy, are presented. The atomic force microscopy was used to identify oxidized and unoxidized YBa_2Cu_3O_{7-δ} crystal. The YBa_2Cu_3O_{7-δ} single oxidized crystal was examined for magnetic properties by means of magnetic force microscopy. The research was carried out at a room temperature and in the air atmosphere without external magnetic field.
EN
Scanning tunneling microscopy/spectroscopy as well as atomic force microscopy were applied to study the non-structural and nanoelectronic properties of periodic nickel nanoparticles deposited on n-silicon substrates. Periodic nickel (Ni) nanoparticles were prepared by using nanosphere lithography and analyzed by scanning tunneling microscopy/spectroscopy and atomic force microscopy. By the evaporation of Ni perfectly ordered nanoparticles were produced and very good correlation between latex mask was observed. Finally, tunneling spectroscopy performed with non-magnetic tip yield information about local electronic properties of nanoscale structures at surface.
EN
In this paper we present experimental investigations of carbon nanotubes deposited on highly orientated pyrolytical graphite using scanning tunneling microscopy and scanning tunneling spectroscopy. The aforementioned methods apart from detailed topographic data provided us with information about local density of state. We also show the I-V and dI/dV characteristics, which display the metallic and semiconducting characters of investigated carbon nanotubes. All measurements were taken in the air and at room temperature.
EN
The effect of nitrogen ion implantation on Stellite 6 cobalt alloy was investigated. In this research, cobalt alloy was implanted with 65 keV nitrogen ions at the fluence of (1÷10)×10¹⁶ N⁺/cm². The distribution of implanted nitrogen ions and vacancies produced by them was calculated using the SRIM program. The surface morphology was examined and the elemental analysis was performed using scanning electron microscopy, energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction. The wear tests were conducted with the use of the pin-on-disc method. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear. The friction coefficient of the implanted sample at the fluence of 1×10¹⁷ N⁺/cm² increased to the values characteristic of an unimplanted sample after 5000 measurement cycles. The depth of the worn trace was about 2.0 μm. This implies that the thickness of the layer modified by the implantation process is ≈2.0 μm and exceeds the initial range of the implanted ions by an order of magnitude. This is referred to as a long-range implantation effect. The investigations have shown that the long-range effect is caused by movement of not only implanted nitrogen atoms but also carbon dopant atoms towards the friction zone. Diffusion of carbon atoms has been documented here for the first time. Furthermore, the increased content of oxygen atoms on the track bottom indicates a dominant oxidative wear of the Stellite samples after nitrogen implantation with the energy 65 keV and the fluences of 5×10¹⁶ and 10¹⁷ N⁺/cm².
EN
Electrical and luminescent properties of ZnS:Mn,Cu,Cl thin films were investigated. Combined both studies: scanning tunneling microscopy and scanning tunneling spectroscopy were made. The current and differential conductance versus applied voltage were measured for the ZnS:Mn,Cu,Cl thin films. Additionally, the spectral and kinetic properties of the electroluminescent cells based on the ZnS:Mn,Cu,Cl thin films were measured. The maximum of the electroluminescence lies at 586 nm. The electroluminescence was excited by rectangular wave voltage pulses with pulse length from 1μs to 1 ms. It was shown that time dependence of the electroluminescence is well explained assuming energy transfer between monomolecular centres.
EN
Paper presents the results of magnetoelastic tests of ring-shaped cores made of Fe_{40}Ni_{38}Mo_{4}B_{18} amorphous alloy. The cores were subjected to thermomagnetic annealing under different values of magnetic field. The obtained results enabled us to connect the magnetoelastic characteristics of Fe_{40}Ni_{38}Mo_{4}B_{18} amorphous alloy with the conditions of thermomagnetic treatment of the material.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.