Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A new approach for reduction of scattering rate of electrons by polar optical phonons in the double barrier heterojunction quantum well is proposed. This approach is based on the phonon localization in narrow phonon wells. The enhancement of the electron saturated drift velocity in the Al_{0.2}Ga_{0.8}As/GaAs/Al_{0.2}Ga_{0.8}As high electron mobility transistor channel is envisaged theoretically and observed experimentally. The drift velocity in the channel in high electric fields (E >10 kV/cm) exceeded the maximal drift velocity in bulk GaAs (v_{max}=10^7 cm/s) and achieved the value of 4×10^7 cm/s.
EN
We report on the results of experimental study of free carrier heating in degenerate GaAs tunnel p-n diodes when the carriers are excited by pulsed microwave radiation. Free carrier heating is responsible for the electromotive force in the diode. The magnitude of the electromotive force linearly depends on pulsed microwave power and increases with the decrease in semiconductor lattice temperature. It is almost independent of the pulsed microwave frequency and of p-n junction plane orientation in respect to electric field direction. In the tunnelling regime the dark current in the diode is reduced, however, at high enough forward bias the diffusive current is stimulated due to hot carrier phenomenon.
EN
Investigations of detection of high power microwaves in planar asymmetrically shaped microwave diodes on the basis of Al_xGa_{1-x}As ternary semiconductors with various AlAs mole fraction are presented. The principle of operation of the microwave diodes is based on carrier heating phenomena in asymmetrically shaped homogeneous semiconductor structure due to different distribution of the electric field strength along the sample. Experimental results of microwave detection on the barrier-less asymmetrically shaped diodes are presented paying special attention to the homogeneity of Al_xGa_{1-x}As which was monitored by photoluminescence technique.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.