Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The facile and controlled synthesis of narrowly dispersed molecularly imprinted polymer (MIP) microspheres with both photo- and thermo-responsive template binding properties in pure aqueous media is described. Narrowly dispersed "living" core polymer microspheres with surface-immobilized dithioester groups were firstly prepared via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization (RAFTPP). The polymer microspheres were then successively grafted with an azobenzene (azo)-containing MIP layer and thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) brushes via surface-initiated RAFT polymerization to provide the desired product. The successful grafting of the azo-containing MIP layer and PNIPAAm brushes was confirmed by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and static contact angle experiments. The attachment of an azo-containing MIP layer onto the "living" core polymer beads with a narrow size distribution allows the direct generation of narrowly dispersed photoresponsive core-shell MIP microspheres. Moreover, the introduction of PNIPAAm brushes onto the core-shell MIP microspheres has been shown to significantly improve their surface hydrophilicity leading to pure water-compatibility. Additionally, this modification confers thermo-responsive template binding properties upon the microspheres.
EN
The Co-Pd/SiO2 and Co-Cu/SiO2 catalysts were prepared via solvated metal atom impregnation (SMAI) method and investigated for the Fischer-Tropsch (F-T) synthesis. The catalysts contained 5wt.% Co and a weight ratio of Pd (or Cu) to Co of 1/30. XPS indicated that Co, Pd and Cu were in metallic state. The results of XPS and magnetic measurements showed that Co and Pd (Cu) were alloyed. The Co particles on the catalysts were very highly dispersed and they displayed superparamagnetic behavior. FT-IR indicated that the electrons shifted from Cu and Pd to Co. Catalytic tests showed that CO hydrogenation rates followed the order Pd-Co > Cu-Co > Co. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.