Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Thin film brass alloys were galvanostatically electrodeposited from non-cyanide citrate solutions. Aqueous sulphate solutions were used as deposition medium. It was aimed to understand the effect of ultrasonication of the solutions before electrodeposition process. Ultrasonication was not applied during deposition. This method was utilized to change solution characteristics, by applying high energy via cavitation mechanism, which would result in changes in resultant film properties. X-ray diffraction technique was used to investigate phase formation in samples. Moreover X-ray diffractograms were also used to calculate grain size values. Cu and Zn elements were codeposited successfully to form brass alloys. When phase formations in the samples were compared to each other, it was concluded that although there are small differences between X-ray diffractograms of samples, ultrasonic treatment before electrodeposition is not an effective way to alter phase characteristics of CuZn alloy samples, since all samples have shown similar X-ray diffraction graphs. Grain size is found to get smaller with presence of ultrasonication, extending ultrasonication time caused only small random changes in grain size.
EN
Copper zinc alloys were electrodeposited in the form of thin films. Electrodeposition process was carried out in non-cyanide aqueous medium, under constant current. Effect of pre-deposition ultrasonication of solution was investigated. In other words ultrasonic treatment was applied only before the electrodeposition. Solutions were subjected to high-energy ultrasonication for increasing times. Cyclic voltammetry was used to understand changes occurring due to duration of ultrasonication. No ultrasonication was applied during deposition. Atomic composition of resultant films were revealed by MP-AES. It was found that implementation of ultrasonic treatment before electrodeposition affects CV characteristics, when compared to non-ultrasonicated solution. Atomic composition of fabricated samples were found to be close to each other, some of them showing more deviation.
EN
In this study, DP800 (dual phase) steel plates, having 1 mm thickness were joined by copper-based (CuAl8) wire using CMT-brazing (cold metal transfer) technique. Specimens were prepared in joining forms in butt joint configuration. CMT-brazing operations were done under nine different CMT-brazing current intensities of 40, 45, 50, 55, 60, 65, 70, 75 and 80 A. CuAl8 wire, composed largely of copper, was used as the filler metal. Having accomplished the CMT-brazing operations, the tensile properties of joints, and micro- and macro-structures of joints were investigated in order to test the joinability of DP800 steel by CMT-brazing technique.
EN
Cobalt-Nickel alloys have been widely used for decoration, in magnetic recording devices and corrosion resistance applications, etc. In this study, the influences of cobalt amount in electrolyte on the magnetic and structural properties of the electrodeposited Co-Ni alloys were investigated. An electrolyte solution, consisting of cobalt sulfate, nickel sulfate, nickel chloride and boric acid, was used in electrodeposition. The electrochemical investigation of Co-Ni alloys was completed using cyclic voltammetry and galvanostatic studies. The morphological and structural analyses of the alloys were performed using inductively coupled plasma, scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer techniques. The effect of cobalt concentration on the magnetic properties, phase structure and grain size of the alloys was investigated. Magnetic hysteresis results indicate that the amount of the cobalt content in the electrolyte has a strong influence on the ferromagnetic behavior of fabricated alloys. Results of the study show that changing the electrodeposition parameters, such as composition of electrolyte solution, allows to fabricate alloys with different properties.
Open Physics
|
2008
|
vol. 6
|
issue 2
327-331
EN
The dependence of the ablation rate of aluminium on the fluence of nanosecond laser pulses with wavelengths of 532 nm and respectively 1064 nm is investigated in atmospheric air. The fluence of the pulses is varied by changing the diameter of the irradiated area at the target surface, and the wavelength is varied by using the fundamental and the second harmonic of a Q-switched Nd-YAG laser system. The results indicate an approximately logarithmic increase of the ablation rate with the fluence for ablation rates smaller than ∼6 μm/pulse at 532 nm, and 0.3 μm/pulse at 1064 nm wavelength. The significantly smaller ablation rate at 1064 nm is due to the small optical absorptivity, the strong oxidation of the aluminium target, and to the strong attenuation of the pulses into the plasma plume at this wavelength. A jump of the ablation rate is observed at the fluence threshold value, which is ∼50 J/cm2 for the second harmonic, and ∼15 J/cm2 for the fundamental pulses. Further increasing the fluence leads to a steep increase of the ablation rate at both wavelengths, the increase of the ablation rate being approximately exponential in the case of visible pulses. The jump of the ablation rate at the threshold fluence value is due to the transition from a normal vaporization regime to a phase explosion regime, and to the change of the dimensionality of the hydrodynamics of the plasma-plume.
EN
In this study, cobalt-nickel (Co-Ni) alloys were deposited electrochemically onto aluminum substrates under applied current densities of 103.8, 138.4, 173 and 207.6 A m¯². Influence of the applied current density on the structural and magnetic properties of the Co-Ni alloys was investigated. The bath for Co-Ni alloys deposition was composed of 0.08 mol l¯¹ CoSO₄·7H₂O, 0.2 mol l¯¹ NiCl₂·6H₂O, 0.1 mol l¯¹ NiSO₄·6H₂O and 0.25 mol l¯¹ H₃BO₃. The electrochemical investigation of Co-Ni alloys was completed using cyclic voltammetry and galvanostatic studies. Inductively coupled plasma analysis has shown that the amount of the cobalt in the deposited alloy has decreased from 73.61% to 67.01% with the increase of the applied current density from 103.8 to 207.6 A m¯². According to the magnetic analysis results, the values of coercivity coefficient of the deposited Co-Ni alloys range between 115 and 150 Oe, confirming ferromagnetic behavior of the alloys. Experiment results indicate that magnetic and structural properties of the Co-Ni alloy deposits are greatly influenced by the applied current density in the electrodeposition system.
EN
In this study, the effects of pre-forming and foam reinforcement on the axial compression behavior of circular thin-walled aluminum tubes were experimentally investigated. Compression tests were performed in a computer controlled test machine at the cross-head speed of 1 mm/s. Pre-forming has changed the folding behavior of tube and increased the energy absorbing capacity 1.26 times that of empty tube. The PVC reinforcement has increased the energy absorbing capacity 1.22 times. PVC reinforcement increases the stability of tube wall deformation; hence it positively affects the energy absorption. The energy absorbing capacity of pre-formed and PVC foam reinforced tubes increase approximately 1.4 times that of empty tube. It was however shown that the reinforcement and pre-forming had no significant effect on the maximum load.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.