Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 3
395-398
EN
Penetration of the liposome membranes doped with vanadium complex formed in the liquid-crystalline phase from egg yolk lecithin (EYL) by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) spin probes has been investigated. The penetration process was followed by 360 hours at 24°C, using the electron spin resonance (EPR) method. The spectroscopic parameter of the partition (F) of this probe indicated that a maximum rigidity of the membrane was at 3% concentration of the vanadium complex. Computer simulations showed that the increase in the rigidity of the membrane corresponds to the closure of gaps in the surface layer of the membrane, and indicates the essential role of the membrane surface in transport processes.
2
88%
EN
In this paper, the effects of model (commercial) and natural (extracted from peat) humic substances on the membrane of liposomes formed with egg yolk lecithin (EYL) are presented. In our research, mass concentrations of fulvic and humic acids were used, which in relation to lecithin varied from 0% to 13%. To study membrane fluidity, electron spin resonance (EPR) was used with two spin probes, penetrating various regions of the lipid bilayer. The effects of model and natural humic substances (humic acids – HAs and fulvic acids – FAs) on the lipid membrane in different regions were researched: the lipid-water interphase, and in the middle of the lipid bilayer. It was shown that FA and HA impact the fluidity of liposome membranes in different ways. Increased mass concentrations of HAs decreased membrane fluidity in both acids: extracted from peat and the model. However, increased mass concentration of FAs extracted from peat, decreased membrane fluidity in the surface region, at the same time stiffening the central part of the bilayer. Increasing the concentration of FAs extracted from peat had the opposite effect when compared to model FA. This effect may be related to the complexation of xenobiotics present in the soil environment and their impact on biological membranes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.