Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In modern research on catalysts for NH3 synthesis a lot of attention is paid to cobalt. In this work the new catalytic systems based on cobalt are presented. Unsupported cobalt catalysts singly promoted (La or Ba) and doubly promoted (La and Ba) were prepared and tested in NH3 synthesis reaction under commercial synthesis conditions. Characterization studies revealed that lanthanum plays a role of a structural promoter, which improves the surface of catalyst precursors and prevents from sintering during calcination. However, lanthanum has a negative effect on the reduction of cobalt oxide, but the addition of barium promoter (Co/La/Ba catalyst) diminishes the negative impact of La. The co-promotion of cobalt with lanthanum and barium results in the increasing of the active phase surface and improvement of its activity in NH3 synthesis.
EN
A group of supported ruthenium catalysts was prepared and tested in methanation of small CO amounts (7000 ppm) in hydrogen-rich streams. High surface area graphitized carbon (484 m2/g) was used as a support for ruthenium and RuCl3 was used as a Ru precursor. Some of the Ru/C systems were additionally doped with barium (Ba(NO3)2 was barium precursor). The catalysts were characterized by the chemisorption technique using CO as an adsorbate. To determine the resistance of the catalysts to undesired carbon support methanation, the TG-MS experiments were performed. They revealed that the barium addition inhibits support losses. The studies of CO methanation (fl ow reactor, atmospheric pressure) have shown that some of the supported ruthenium catalysts exhibit high activities referred to the metal mass. The catalytic properties of ruthenium proved to be dependent on metal dispersion. Some of the Ru/C and Ba-Ru/C systems exhibit higher activity in CO hydrogenation than the commercial nickel-based catalyst.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.