Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
A nuclear microprobe at the IFJ PAN in Cracow has found numerous applications in different fields of research, mostly in biophysics, medical sciences, geology, and material research. In order to extend the research possibilities, a new X-ray microprobe was constructed. This new microprobe consists of three experimental lines dedicated to: (i) X-ray irradiation of biological specimens, (ii) elemental analysis of samples by micro X-ray fluorescence or total reflection X-ray fluorescence methods and (iii) computer microtomography. In this paper the computer microtomography line was described. The line consists of an open type Hamamatsu L9191 X-ray tube with microfocusing to about 2 μm, a high resolution X-ray sensitive CCD camera, and a precise goniometer composed of six piezoelectric motors. Depending on the required X-ray energy, the Hamamatsu tube is used with Ti, Mo, Ag, or W targets. A small focus size and short focus-to-object distance enable to obtain images of samples with a magnification of more than 1000× and resolution of the order of 2 μm. The computer microtomography measurements are carried out using home developed codes combined with commercial software. Details of the microprobe construction and preliminary results of the computer microtomography experiments are presented.
EN
Determination of physical properties of porous geological materials is of great importance for oil industry. The knowledge of rocks properties is usually obtained from porosity studies such as pore size distribution, specific surface area determination, and hydrodynamic permeability calculations. This study describes determination of elemental composition and measurements of the particular physical properties of geological samples (porous sandstone rocks) by means of the nuclear and X-ray microprobes at the Institute of Nuclear Physics, Polish Academy of Sciences in Kraków, Poland. The special emphasis has been put on the computed microtomography method. Measurements have been carried out in close cooperation with Department of Geophysics, FGGEP AGH in Kraków, Poland. Chemical composition of the Rotliegend sandstone rock samples (few millimeters diameter), extracted from a borehole at 2679.6 m, 2741.4 m and 2742.4 m depth have been investigated using the 2.2 MeV proton beam (proton induced X-ray emission technique). Next, measurements of the porosity and the specific surface area of the pore space have been carried out using the X-ray microtomography technique. Basing on microtomographic data obtained with the high spatial resolution, simulations of the fluid dynamic in the void space of porous media have been carried out. Lattice Boltzmann method in the 3DQ19 geometrical model has been used in order to predict the hydraulic permeability of the media. In order to avoid viscosity-permeability dependence the multiple-relaxation-time model with half-way bounce back boundary conditions has been used. Computing power-consuming processing has been performed with the use of modern grid infrastructure.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.