The increase in the costs of storage and disposal of post-production residues has resulted in the search for new directions for their recycling, which is closely related to the necessity of protecting the natural environment and promoting a circular economy. Moreover, the apparent interest shown by the food market in raw materials with high antioxidant activity implies an increasing use of by-products. The objective of the study was to determine the effect of the type and concentration of the solvent on the efficiency of extracting polyphenols from distillery stillage as well as their antioxidant activity by using several solvents: methanol:water (70:30 v/v), methanol:water (100:0 v/v), ethanol:water (70:30 v/v) or ethanol:water (100:0 v/v). The DPPH radical method was used to determine the antioxidant activity of the obtained extracts. The normalised variable (NV) and statistical measure (MS) were determined, based on which the effectiveness of the solvents was evaluated. The highest polyphenolic content and the antioxidant activity were obtained by using ethanol:water (70:30 v/v) as a solvent in the extraction of polyphenolic compounds from distillery stillage.
In membrane bioreactor (MBR) technology, the activated sludge method is integrated with the separation of solid particles by ultrafiltration (UF). The technology ensures a high effluent quality, a shortened hydraulic retention time and a long sludge age that promotes slowly growing microorganisms and low sludge production. These advantages and the modular construction mean that MBRs have started to treat wastewater generated on passenger ships to adjust the treatment systems to the International Convention for the Prevention of Pollution from Ships. The aim of this paper is to present operational aspects of MBRs treating wastewater generated on ships, which are different from the aspects of MBR operation on land. This paper describes the consequences of separate treatment of gray wastewater (from showers, washing machines and kitchens) and black wastewater (from toilets), and of discontinuous flow of wastewater resulting from very high variability in the passenger numer and the use of the MBR as a ship ballast element. The possibility of introducing a water recovery technology using the existing infrastructure on passenger ships as well as the hybrid UF/reverse osmosis technology is presented. The findings demonstrated that gray effluent may be reused for marine main engine cooling jackets of high and low temperature, ship boilers or ship laundry.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.