Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The aim of this study was to analyse the correlation between HPV16 E6 variants and the physical status of viral genome (integrated, mixed, episomal) among patients with cervical cancer (n=40) and low-grade squamous intraepithelial lesions - LSIL (n=40). The study was performed on 80 HPV16 positive samples. HPV16 E6 variants were identified using PCR and DNA sequencing. Nucleotide sequences of E6 were compared with the prototype sequence (EUR-350T). The physical state of HPV DNA was determined as the ratio of E2/E6 copy number per cell. Twelve different intratypic variants were identified as belonging to European (in 77 samples) and North-American 1 (in 3 samples) sublineages. The most prevalent non-synonymous variant was EUR-350G, which occurred with similar frequency in cervical cancer and LSIL. The frequencies of additional mutations in variants with EUR-350T or EUR-350G sequences differed significantly. For the first time, missense mutations G122A, C153T and G188A were discovered in EUR-350G variant. The integrated viral genome was predominant in women with cervical cancer. The EUR-350T prototype and EUR-350G without additional mutations variants were prevalent in cervical cancer samples with the HPV16 characterized by integrated DNA. In summary, European variants of HPV16 E6 dominated in both cancer and LSIL group. The presence of EUR-350G favoured the occurrence of additional nucleotide changes. We showed that nucleotide changes occur significantly more often in the mixed form of viral DNA and in LSIL group and that the variants without additional mutations may promote integration of HPV16 genome.
EN
Human papillomavirus (HPV) is widely accepted as a causative agent of cervical cancer. The distribution and prevalence of HPV types depend on geographic region and demographic factors. The aim of this study was to investigate the relationship between the presence of various HPV types and the outcome of cytological examination. Cervical smears were obtained from 125 women from southern Poland: low grade squamous intraepithelial lesions (LSIL) - 44, high grade squamous intraepithelial lesions (HSIL) - 12, cervical carcinoma - 27 and 42 women without abnormality in cytology as a control group. DNA was extracted from the smears and broad-spectrum HPV DNA amplification and genotyping was performed with the SPF 10 primer set and reverse hybridisation line probe assay (INNO-LiPA HPV Genotyping, Innogenetics). HPV DNA was detected in approximately 72% cases, more frequently in women with squamous intraepithelial lesions and cervical carcinoma than in the control group (P < 0.0005). The most frequent type found was HPV 16 (37%), followed by HPV 51 (28%) and HPV 52 (17%). A single HPV type was detected in 51% positive cases, more frequently in cervical cancer specimens. Multiple HPV infection was dominant in women with LSIL and normal cytology. Prevalence of HPV 16 increased with the severity of cervical smear abnormality. For women HPV 16 positive, the relative risk (odds ratio) of the occurrence of HSIL and cervical cancer versus LSIL was 14.4 (95% CI, 3.0-69.2; P=0.001) and 49.4 (95% CI, 6.5-372.8; P < 0.001), respectively. Genotyping of HPV will allow better classification of women with cervical abnormalities into different risk groups and could be useful in therapy.
EN
The aim of this study was to analyse the correlation between a new multiplex qPCR assay and a reference qPCR assay for assessment of the human papillomavirus (HPV16) load and the viral genome status. The study was performed on 100 HPV16 positive samples containing premalignant lesions and carcinomas. HPV16 E2 and E6 gene loads were assessed by two PCR methods. The load of E2 and E6 was normalized to the cell number by qPCR targeting the RNase P open reading frame. The physical state of the viral genome was determined as a ratio of E2/E6 copies number per cell. Among 100 samples analysed, there were no statistically significant differences in the E2 and E6 viral load evaluated by multiplex qPCR and qPCR, the correlation coefficients were 0.98 and 0.97, respectively. There were 19% of samples with the integrated, 73% with mixed and 8% with episomal state of viral genome detected by multiplex qPCR and 17%, 79%, 4%, respectively, found by qPCR. Prevalence of integrated and episomal forms estimated by multiplex qPCR was higher than the one obtained by qPCR (Chi2, p < 0.0001), but in samples with premalignant and malignant diagnoses no significant differences were demonstrated regardless of the methods used. Sensitivity and specificity of multiplex qPCR were 93.7% and 100% as compared with qPCR, the positive predictive value was 100%. In summary, the multiplex qPCR assay in respect of HPV16 load and the frequency of viral genome status was shown to be a sensitive and specific reference method. Simultaneous estimation of E2 and E6 genes in one reaction tube reduces the cost of testing.
EN
The purpose of this study was to compare hybrid capture assay with PCRs using different primers for the L1, E6-E7 regions for the detection of human papillomavirus (HPV) genome. One hundred twenty-five cervical smears with normal (n = 42) and abnormal (n = 83) cytology were investigated. Those at high-risk for HPV were studied by hybridization antibody capture assay and PCR with the pU-1M/pU-2R primers. Target DNA from the HPV L1 region was amplified by SPF10 primer set and home-PCR with MY09/MY11 primers. The presence of HPV DNA in cervical smears was detected by SPF10 (in 72% of cases), MY09/MY11 (58%), hybrid capture (55%) and pU-1M/pU-2R (39%). Results obtained with the SPF10 and MY09/MY11 consensus primer sets as well as hybrid capture and pU-1M/pU-2R specific for high-risk types differed significantly (χ2, P < 0.0005). The correlation between assays with the use of SPF10 and MY09/MY11 was 86% and between hybrid capture and the pU-1M/pU2R technique - 78%. In 49% of samples HPV DNA was detected by the four methods, whereas in 12% only by the SPF10 primers. The most sensitive technique was found to be PCR with the use of SPF10 primers, while the most specific - the MY09/11 PCR method. It seems that home-PCR with MY09/MY11 primers could be applied in screening tests.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.