Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
In this paper, we examine the interacting dark energy model in f(T) cosmology. We assume dark energy as a perfect fluid and choose a specific cosmologically viable form f(T) = β√T. We show that there is one attractor solution to the dynamical equation of f(T) Friedmann equations. Further we investigate the stability in phase space for a general f(T) model with two interacting fluids. By studying the local stability near the critical points, we show that the critical points lie on the sheet u* = (c − 1)v* in the phase space, spanned by coordinates (u, v, Ω, T). From this critical sheet, we conclude that the coupling between the dark energy and matter c ∈ (−2, 0).
EN
We study the cosmological evolutions of the equation of state (EoS) for the universe in the homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) space-time. In particular, we reconstruct the cyclic universes by using the Weierstrass and Jacobian elliptic functions. It is explicitly illustrated that in several models the universe always stays in the non-phantom (quintessence) phase, whereas there also exist models in which the crossing of the phantom divide can be realized in the reconstructed cyclic universes.
3
88%
EN
In this paper, we have considered the g-essence and its particular cases, k-essence and f-essence, within the framework of the Einstein-Cartan theory. We have shown that a single fermionic field can give rise to the accelerated expansion within the Einstein-Cartan theory. The exact analytical solution of the Einstein-Cartan-Dirac equations is found. This solution describes the accelerated expansion of the Universe with the equation of state parameter w = −1 as in the case of ΛCDM model.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.