Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 40

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
1
Content available remote

Deep Defects in Low-Temperature GaAs

100%
EN
Conductivity of GaAs layers grown by molecular beam epitaxy at low substrate temperature (190-200°C) and then annealed at few different temperatures (between 300 and 600°C) were studied. It was confirmed that electron transport is due to hopping between arsenic antisite defects. Parameters describing hopping conductivity and their dependence on temperature of annealing are discussed. Other deep defects with activation energies of 0.105, 0.30, 0.31, 0.47, 0.55 eV were found using photoinduced current transient spectroscopy measurements.
2
100%
EN
A model explaining hopping conductivity via EL2 deep centers in low temperature GaAs is presented. It is proposed that the wave function of the EL2 center consists of a localized part and of an external one. The model can describe such features as large wave function radius of hopping centers, changes of the conductivity during transition of EL2 to the metastable state and a high potential fluctuation amplitude.
3
100%
EN
Photo-ESR and optical absorption measurements were done on annealed neutron irradiated GaP crystals. The position of paramagnetic gallium anti-site level in GaP energy gap has been determined. Additionally, the position of paramagnetic phosphorus antisite level, earlier determined in the paper of Kruger and Alexander, has been confirmed. Moreover, unusual in ESR experiments temperature dependence of phosphorus antisite amplitude in neutron irradiated GaP crystals has been explained.
EN
We present new results of luminescence of n-type 6H-SiC crystals. We have found two shallow donors with ionization energies at 60 meV and 140 meV. We have shown that the blue luminescence is not affected by the ionization of the shallower donor and is related to deeper donor which we attribute to N at C-site. We propose that the origin of the more shallower donor at 60 meV is related to carbon vacancy. We have found that the intensity of the orange luminescence increases under infrared illumination. This result confirms that the orange luminescence is due to conduction band-deep centre transitions. We believe that deep centre responsible for the orange luminescence is the silicon vacancy.
6
Content available remote

Antisites Defects in GaP

100%
EN
ESR, optical, and transport measurements were done on neutron-irradiated GaP crystals subjected to thermal annealing. The behavior of two dominant paramagnetic defects: phosphorus antisite PP4 and WA1 [1] was followed. ESR signal similar to WA1 was earlier attributed to the defect related with gallium antisite [2]. Our thermal annealing experiments supported such attribution. Apart from that, the obtained results indicated that two dominant absorption bands in neutron-irradiated GaP with maxima at 0.79 and 1.13 eV [1] were not connected with PP_{4} or WA1 defects. However, one of these paramagnetic defects (or two of them) were responsible for hopping transport in n-irradiated GaP crystals.
7
Content available remote

Nature of Donors in SiC

88%
EN
6H-SiC samples were examined by ESR technique in temperature range from 5 K up to 300 K. Two kinds of ESR lines were observed: a single line at g = 2.0054 ± 0.0007, called X-line, and a triplet corresponding to isolated nitrogen defect. Ionization energy of X defect was determined as about 60 meV and the ionization energy of isolated nitrogen was determined as about 200 meV below SiC conduction band.
EN
Electrical transport and ESR studies were performed on the state-of-theart GaN layers grown on sapphire substrate using metal organic chemical vapour deposition technique. For undoped samples electron concentration below 2×10^{17} cm^{-1} and mobility up to 500 cm^{2}/(V s) were achieved whereas hole concentration up to 7×10^{17} cm^{-3} and mobility about 16 cm^{2}/(V s) were obtained for intentionally Mg doped samples and subsequently annealed. Temperature dependence of mobility was discussed. ESR revealed the presence of two resonance absorption lines. One of them with g_{⊥}=1.9487 and g_{∥}=1.9515, commonly observed in n-type GaN was due to shallow donor. The second ESR line was an isotropic one of g=2.0032 and it is discussed.
EN
We report on the results of photoluminescence and thermoluminescence measurements of various 6H-SiC crystals. At low temperature in all n-type samples two bands with maxima at 2.7 eV (blue) and 1.8 eV (orange) were detected. In the p-type material only blue band was observed. The mea­surements performed at a broad range of temperatures showed totally dif­ferent behaviour of photoluminescence intensity of both bands. The pre­sented results could be explained in the model assuming well established donor-acceptor pair recombination for the blue band emission and the con­duction band - deep defect transition for the orange band. The proposed model was confirmed by thermoluminescence measurements of the orange band which showed peaks at 30 K, 80 K, 100 K, 150 K attributed to ioniza­tion of subsequent shallow donor levels.
EN
Magnetic properties of bulk wurtzite n-type GaMnN and highly resistive GaMnN:Mg monocrystals were studied for the magnetic field applied parallel and perpendicular to the crystal hexagonal c-axis. Magnetization of both types of samples reveals paramagnetic behavior. However, for n-type GaMnN isotropic magnetization was observed which is in agreement with Mn d^5 configuration. On the other hand, GaMnN co-doped with Mg shows large magnetic anisotropy which suggests Mn to be in nonspherical d^4 or d^3 configuration.
12
Content available remote

MnAs Nanocrystals Embedded in GaAs

76%
EN
Magnetic properties of MnAs nanocrystals embedded in GaAs are analyzed in the frame of phenomenological model proposed by Sasaki for ferritin superparamagnets. Our calculations explain qualitatively experimental data of magnetization versus temperature, obtained according to zero-field-cooled and field-cooled protocols. They show dynamics of magnetization of MnAs nanocrystals in range of temperature from 10 K to 320 K. There is transition from state in which very slow dynamics is observed (frozen state) to state in which dynamics is fast (quasi-superparamagnetic state).
13
76%
EN
The first thermally stimulated current (TSC) and deep level transient spectroscopy (DLTS) studies performed on GaAs grown by molecular beam epitaxy (MBE) at low substrate temperatures (LT GaAs) are reported. TSC experiments, conducted on as grown and 400-580°C annealed layers showed domination of arsenic antisite (EL2-like) defect and supported its key role in hopping conductivity. DLTS studies, performed on Si doped and annealed at 800°C layers revealed substantially lower concentration of EL2-like defect and an electron trap of activation energy ΔE = 0.38 eV was found.
EN
Studying bulk GaP, highly doped with Cr, and searching for possible ferromagnetic semiconductor in view of spintronic applications, we found superconducting behavior of this material unexpectedly. Magnetization techniques and X-ray diffraction were applied to study these crystals. Magnetization revealed superconducting features up to about 6 K and X-ray studies showed that superconductivity might be related to small size Cr precipitates.
EN
Semi-insulating, p- and n-type liquid encapsulated Czochralski grown phosphorus rich GaP crystals before and alter neutron irradiation were studied. EPR measurements proved that the phosphorus antisite defect P_{Ga} introduced by neutron irradiation was exactly the same as in as grown materials, i.e. surrounded by four substitutional phosphorus atoms. In neutron irradiated crystals EPR showed also a signal, similar to the one found in plastically deformed GaAs and GaP. The concentrations of P_{Ga} and of the other defect were estimated to be of the same order of magnitude. Two absorption bands at 0.81 and 1.12 eV were found for irradiated materials. The temperature dependence of resistivity indicated hopping as the mechanism of conduction in samples irradiated with doses higher than 4 × 10^{16} cm^{-2}.
16
76%
EN
Photoluminescence, photocurrent, thermally stimulated current and photoinduced current transient spectroscopy measurements done on molecular beam epitaxy In_{0.52}Al_{0.48}As layer, lattice matched to InP are reported. The investigated layers were grown on semi-insulating InP wafers, at temperature range from 215 to 450°C. It was found that the Fermi level was pinned to a dominant midgap center (most likely similar to EL2 center). Moreover, there were at least 7 other defects but with much smaller concentrations. Their activation energies were equal to 0.076, 0.11, 0.185, 0.295, 0.32 and 0.40 eV. The layers exhibited a very low luminescence and a small photocurrent.
17
76%
EN
The systematic EPR, optical absorption, photoluminescence and thermally stimulated current studies of acceptor defects in bulk GaAs were performed. For the first time, parallel EPR and optical absorption experiments allowed to find the absorption spectrum due to the photoionization of FR1 defect with the threshold at 0.19 eV. Photoluminescence studies showed two families of bands in the energy range of about 1.25 to 1.35 eV. We tentatively ascribed them to FR1 and FR2 complexes with shallow donors. Thermally stimulated current measurements showed two peaks at 90 K and 110 K assigned to FR1 and FR2 respectively.
18
Publication available in full text mode
Content available

76%
EN
We report on cross-sectional transmission electron microscopy and magnetic force microscopy studies performed on self-organized MnAs nanoclusters embedded in GaAs. It was found that 10÷20 nm large MnAs ferromagnetic nanocrystals were formed during rapid thermal annealing of Ga_{1-x}Mn_xAs layers at 600ºC, leading to magnetic contrasts in magnetic force microscopy images.
EN
Structure of samples of lithium iron vanadium phosphates of different compositions were investigated by X-rays, electron microscopy and Raman spectroscopy. The investigated salts were mainly of olivine-like and NASICON-like structures. The X-ray diffraction and the Raman scattering show different crystalline structures, which is probably caused by difference between cores of the crystallites (probed by X-rays) and their shells (probed by the Raman scattering). Most of the Raman spectra were identified with previously published data, however in the samples with high vanadium concentration we have observed new, not reported earlier modes at 835 cm^{-1} and 877 cm^{-1}, that we identified as oscillations related to V_2O_7^{4-} or VO_4^{3-} anions.
EN
The studies of transport and optical properties of GaAs implanted with high arsenic doses were performed. As-implanted samples showed hopping conductivity and the exponential absorption tail in the near-IR region. Both effects were probably caused by the amorphization of implanted layer. Using EPR measurements it was found that arsenic antisite defect with high local strain field was created during implantation. Annealing of implanted layers at 600°C led to substantial removal of amorphization, decrease in absorp­tion coefficient and hopping conductivity leading to resistive samples. The possible model of such behaviour may be similar to the one of suggested for low temperature GaAs layers.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.