Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Blood-brain barrier (BBB) is a complex cellular system, which separates the brain and central nervous system (CNS) from the bloodstream. BBB permeability (BBBp) is one of the most important pharmacokinetic properties not only for CNS-active drugs. The brain penetration of CNS-nonactive drugs should be very low to minimize the unwanted CNS side effects. Determination of BBBp of therapeutic compounds is an important component in the design of drugs. Usually the blood-brain partition coefficient (log BB) is used to determine BBB permeability of chemical compounds. Quantitative structure-activity relationship (QSAR) models offer predicting log BB from the molecular structure of a compound. Experimental determination of log BB of the compound is difficult, labour-consuming and time-consuming. It is desirable to predict the blood-brain partition coefficient of compounds from their molecular structures or from physicochemical properties. Various descriptors have been revealed in many studies to be important for predicting BBBp of small molecules via passive diffusion. The most important descriptors usually used to build QSAR models and the QSAR modeling methods were presented in this work. The in silico models based on QSAR are frequently used, but are limited by the restricted accessibility of in vivo data during the early drug discovery phase.
PL
Bariera krew-mózg (ang. Blood-brain barrier - BBB) jest złożonym systemem, który oddziela ośrodkowy układ nerwowy (OUN) od krwioobiegu. Zdolność przenikania bariery krew-mózg (ang. Blood-brain barrier permeability – BBBp) stanowi jedną z najważniejszych właściwości farmakokinetycznych dla leków działających ośrodkowo. Równocześnie, poziom przenikania do mózgu leków działających poza OUN powinien być niski, dla uniknięcia ośrodkowych działań niepożądanych. Ustalenie BBBp substancji leczniczej jest ważnym elementem projektowania leków. Najczęściej używanym wskaźnikiem poziomu przenikania jest współczynnik rozdziału pomiędzy mózg i krew (log BB). Modele matematyczne ilościowej zależności pomiędzy strukturą i aktywnością (ang. quantitative structure-activity relationship - QSAR) dają możliwość przewidywania parametru log BB na podstawie badania struktury związku chemicznego. Doświadczalne ustalanie wartości log BB jest trudne, czasochłonne i pracochłonne. Bardzo przydatna jest więc możliwość przewidywania współczynnika rozdziału związku pomiędzy mózg i krew, na podstawie właściwości fizykochemicznych lub ich struktury. Znacząca rola różnych deskryptorów molekularnych w przewidywaniu log BB została udowodniona w wielu doświadczeniach. W niniejszej pracy opisano najważniejsze z parametrów, często używanych do tworzenia modeli QSAR oraz popularne metody modelowania QSAR. Stosowanie modeli in silico, opartych na metodach QSAR, jest bardzo rozpowszechnione. We wstępnej fazie poszukiwania leku użyteczność tych metod jest ograniczona brakiem dostępu do danych z badań in vivo.
EN
The influence of nine newly synthesized uracil acyclonucleosides, and 36 derivatives of 1,2,3,4-tetrahydroisoquinoline on the activity of enzymes catalysing dTMP and dGMP synthesis, on the content of dTTP and dGTP in acid soluble fraction and on the incorporation of [14C]dThd and [14C ]dGuo into DNA in tumour homogenates was studied. The influence of the compounds was studied in the cytosol from intraoperatively excised human tumours - neurofibrosarcoma and ovarian cancer. It was shown that dTMP and dGMP synthesis is inhibited competitively by 34.1±4.0% in both types of tumours by 0.2 mM 1-N-(3'-hydroxypropyl)-6-methyluracil (1) and 0.2 mM 1-N-(3'-hydroxypropyl)- 5,6- tetramethyleneuracil (2). The mentioned acyclonucleosides reduced the content of dTTP and dGTP in the acid soluble fraction of tumours (59.7±3.1% of control). 1-(4-chlorophenyl)-6,7-dihydroxy- 1,2,3,4-tetrahydroisoquinoline (3), 1-(2,3-dichlorophenyl)-6,7-dihydroxy 1,2,3,4-tetrahydroisoquinoline (4) and 1-(3-methoxyphenyl)-6,7-dihydroxy 1,2,3,4-tetrahydroisoquinoline (5) at 0.2 mM concentration caused a mixed type inhibition of the synthesis of dTMP and dGMP by, on average, 33.2±4.4%, and reduced the content of dTTP and dGTP in the acid soluble fraction (52.6±3.7% of control) but were active only in the cytosol of neurofibrosarcoma. While acyclonucleosides undergo phosphorylation in the cytosol by cellular kinases, with their triphosphates being active acyclonucleoside metabolites, active 1,3,4,5-tetrahydroisoquinoline derivatives (compounds not containing a deoxyribose moiety), cannot be phosphorylated. ACN and THI derivatives which inhibit dThd and dCyd kinase activities, inhibit also the incorporation of [14C]dThd and [14C]dGuo (ACN - 50.2±2.7%, THI - 53.4±3.9% of incorporation inhibition) into tumour DNA. The obtained results point to the mechanism of uracil acyclonucleosides and 1,2,3,4-tetrahydroisoquinoline biological activity consisting in inhibiting the synthesis of DNA components.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.