Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 1
133-136
EN
60P2O5-40Fe2O3 glass was synthesized and 57Fe Mössbauer spectroscopy study was presented. The main goal of the research was to investigate structural changes of local environment of iron ions during gradual crystallization of the glass. It was observed that some changes were evidenced at temperature of heat treatment higher than 400°C, above which content of tetrahedrally coordinated Fe3+ was increased in cost of octahedral sites. This led to formation of areas of nucleation of α-FePO4. Crystallization of α-Fe3(P2O7)2 and Fe2P2O7 was also observed.
2
Content available remote

Position of Fe ions in MgO crystalline structure

71%
EN
Magnesium oxide (MgO) is one of the most important raw materials in many branches of industry. Magnesium oxide is a popular refractory raw material because of its high refractoriness and high resistance to basic slags and environment. In many cases, use of MgO is limited by its properties, especially the presence of secondary phases like iron oxides. The amount and distribution of iron oxides can strongly influence the technological properties of MgO and depend on the manufacturing method, particularly the heat-treatment process. The aim of the study was to evaluate the influence of the heat-treatment process on amount and distribution of iron ions in a magnesium oxide lattice. The 57Fe Mössbauer effect measurements of fused and sintered magnesium oxide samples doped by the iron oxide were conducted. Investigation reveals in both cases the presence of Fe2+ as well as Fe3+ ions. Fe2+ ions occupy Mg2+ octahedral sites in the MgO lattice, whereas the Fe3+ ions are located in highly distorted octahedral coordination. The amount of Fe2+ varies from around 66% for fused samples to 30% for sintered samples.
3
Content available remote

The role and position of iron in 0.8CaZrO3-0.2CaFe2O4

71%
EN
The aim of the study was to characterize the 0.8CaZrO3-0.2CaFe2O4 composite structure with particular emphasis on the role and position of iron in the function of sintering temperature. The paper presents the results of 57Fe Mössbauer effect at room temperature. It was found that the increase of sintering temperature causes an increase in the amount of incorporated iron ions in the CaZrO3-crystal structure. Based on Mössbauer spectroscopy analysis, it was found that three different environments of Fe3+ ions were observed in the obtained materials. Two of them corresponded to CaFe2O4 phase and one was associated with the substitution of Zr4+ by Fe3+ in the CaZrO3 structure.
4
Content available remote

Crystal structure and Mössbauer study of FeAl2O4

61%
EN
In this work the synthesis of hercynite from Fe2O3 and Al2O3 powders was carried out by arc-melting method under the protective argon atmosphere. The obtained material was characterized with the use of powder X-ray diffractometry (XRD) and Mössbauer spectroscopy (MS). A Mössbauer effect in hercynite obtained by the arc-melting method indicated the cations distribution in the spinel structure among the tetrahedral and octahedral interstices. The presence of Fe2+ ions was detected in both tetrahedral and octahedral sites while Fe3+ ions occupied only the octahedral interstices. The approximate formula of the obtained iron-aluminate spinel was as follows (Fe2+0.77Al3+0.23) (Fe3+0.07Fe2+0.05Al0.88)2O4.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.