Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
EN
In this paper, the nonlinear dispersive Zakharov-Kuznetsov equation is solved by using the sine-cosine method. As a result, compactons, periodic, and singular periodic wave solutions are found.
EN
In this study, a new application of multivariate Padé approximation method has been used for solving European vanilla call option pricing problem. Padé polynomials have occurred for the fractional Black-Scholes equation, according to the relations of "smaller than", or "greater than", between stock price and exercise price of the option. Using these polynomials, we have applied the multivariate Padé approximation method to our fractional equation and we have calculated numerical solutions of fractional Black-Scholes equation for both of two situations. The obtained results show that the multivariate Padé approximation is a very quick and accurate method for fractional Black-Scholes equation. The fractional derivative is understood in the Caputo sense.
Open Physics
|
2010
|
vol. 8
|
issue 4
523-526
EN
In this paper, we obtain some new explicit travelling wave solutions of the perturbed KdV equation through recent factorization techniques that can be performed when the coefficients of the equation fulfill a certain condition. The solutions are obtained by using a two-step factorization procedure through which the perturbed KdV equation is reduced to a nonlinear second order differential equation, and to some Bernoulli and Abel type differential equations whose solutions are expressed in terms of the exponential andWeierstrass functions.
Open Physics
|
2008
|
vol. 6
|
issue 3
462-468
EN
We present a new improvement to the Alekseev inverse scattering method. This improved inverse scattering method is extended to a double form, followed by the generation of some new solutions of the double-complex Kinnersley equations. As the double-complex function method contains the Kramer-Neugebauer substitution and analytic continuation, a pair of real gravitation soliton solutions of the Einstein’s field equations can be obtained from a double N-soliton solution. In the case of the flat Minkowski space background solution, the general formulas of the new solutions are presented.
Open Physics
|
2009
|
vol. 7
|
issue 4
821-828
EN
A so-called modified Hauser-Ernst-type extended double-complex linear system is established and used to develop a new inverse scattering method for solving the equations of motion of the string effective action describing the coupled gravity, dilaton and Kalb-Ramond fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the application of the inverse scattering method fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.