Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Lead (+2) was selectively adsorbed on a solid phase extraction (SPE) gel (molecular recognition technology, MRT), quantitatively extracted, and spectrophotometrically determined as the Pb(II)-PAR (4-(2-pyridylazo)-resorcinol) complex. The linear range was 0.01 to 0.75 mg L−1 and the detection limit was 6.4 µg L−1. The MRT-SPE allows selective Pb(II) extraction from complex ion-rich matrices, which is difficult with other techniques. Interference from common matrix ions such as Fe2+, Ni2+, Cu2+ or Co2+ is minimized. [...]
EN
A simple flow-based method was developed for the simultaneous separation of certain transition metal ions (Co, Ni, Cu, Zn, Cd) from aqueous systems, which ions show ecotoxic effects when present at elevated concentrations. A silica-gel-bonded macrocycle system, commonly known as molecular recognition technology (MRT) gel, was used for solid phase extraction (SPE) of the target analytes. The collection behavior of the MRT-SPE system was studied based on pH. Fortified deionized water samples containing 250 µg L−1 of each of the elements were treated at the flow rate of 1 mL min−1. The collected analytes were then eluted by 3 M HNO3 and analyzed using inductively coupled plasma spectrometry. Detection limits of the proposed technique were in the range of 0.004–0.040 µg L−1 for the studied metal ions. The validity of this separation technique was checked with spiked ‘real’ water samples, which produced satisfactory recoveries of 96–102%. The non-destructive nature and highly selective ion-extraction capability of the SPE material are the most important aspects of the proposed method and they are the main focus of this paper. [...]
EN
The original version of the article was published in Cent. Eur. J. Chem. 9(6) (2011), pp 1019–1026. Unfortunately, the original version of this article contains mistakes in the body of Fig. 1. Here we display the corrected version of the Fig. 1.
EN
Abstract Selective separation of cadmium(II) on a macrocycle immobilized solid phase extraction (SPE) system namely AnaLig Cd-01, and commonly known as molecular recognition technology (MRT) gel, have been examined. The MRT-SPE able to retain the cadmium from the metal-affluent aqueous matrix at the pH range of 2 to 8, and the captured species can be recovered via elution with 1 and 6 M HNO3. Besides the effects of solution pH and eluent concentration, the impacts of sample loading flow rates and coexisting matrix ions were also investigated and optimized. The Cd(II) retention capacity of the MRT-SPE was 0.26 mmol g-1, and it can be reused for more than 100 loading and elution cycles. The Cd(II) recovery attained from the metal-spiked natural waters was satisfactory (95.3–98.1%). However, the Cd(II) retention ability of the MRT-SPE was significantly decreased when excess of chelant remain in the aqueous waste matrix. Graphical abstract [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.