Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The cost-effectiveness of resistive plate chamber detectors and their very good timing characteristics, open the possibility to build affordable time-of-flight positron emission tomography systems with a large axial field-of-view. Simulations suggest that, under reasonable assumptions, the absolute 3D true sensitivity, spatial resolution, and noise equivalent count rate of such systems for human whole-body screening, may exceed that of present crystal-based PET technology. However, due to the lack of energy resolution, although having energy sensitivity, the scatter fraction is expected to be considerably higher than that presented by crystal-based PET scanners. In the present paper, the simulation work done so far to access the expected performance of a resistive plate chamber time-of-flight-PET system with 2400 mm length axial field-of-view, a time resolution of 300 ps full width at half maximum for photons pairs, and depth-of-interaction information, will be revised.
2
84%
EN
In spite of the diamagnetic behavior exhibited by bulk ZnO and Au, a ferromagnetic-like behavior is induced in nanoparticles of both systems by appropriate surface functionalization. By capping with thiol derivatized molecules, magnetic hysteresis is observed even at room temperature, whereas the magnetization has a very little temperature dependence. Capping induces an alteration of their electronic configuration that depends on the capping molecule, as evidenced by X-ray absorption spectroscopy, that strongly affects their magnetic properties.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.