Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2014
|
vol. 12
|
issue 8
582-596
EN
We study the isoscalar giant monopole resonance for drip-lines and super heavy nuclei in the framework of relativistic mean field theory with a scaling approach. The well known extended Thomas-Fermi approximation in the nonlinear σ-ω model is used to estimate the giant monopole excitation energy for some selected light spherical nuclei starting from the region of proton to neutron drip-lines. The application is extended to the super heavy region for Z=114 and 120, which are predicted by several models as the next proton magic numbers beyond Z=82. We compared the excitation energy obtained by four successful force parameters NL1, NL3, NL3*, and FSUGold. The monopole energy decreases toward the proton and neutron drip-lines in an isotopic chain for lighter mass nuclei, in contrast to a monotonic decrease for super heavy isotopes. The maximum and minimum monopole excitation energies are obtained for nuclei with minimum and maximum isospin in an isotopic chain, respectively.
EN
The structures of Ne, Na, Mg, Al, Si, P and S nuclei near the neutron drip-line region are investigated in the frame-work of relativistic mean field theory and non-relativistic Skyrme Hartree-Fock formalism. The recently discovered nuclei 40Mg and 42Al, which are beyond the drip-line predicted by various mass formulae are located within these models. We find many largely deformed neutron-rich nuclei, whose structures are analyzed. From the structure anatomy, we find that at large deformation low orbits of opposite parities (e.g. $$\frac{1} {2}^ +$$ and $$\frac{1} {2}^ -$$) occur close to each other in energy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.