Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Multilayer amorphous TiB_{x}/TiSi_{y}C_{z} coatings were formed by duplex treatment: dual beam ion beam assisted deposition and pulsed laser deposition. Post-deposition heating was applied to activate crystallization in the coating. In situ transmission electron microscopy heating experiments were conducted in the temperature range 20-600°C. Crystallization of TiB₂ phase in TiB_{x} layers begun at 450°C, while TiSi_{y}C_{z} layers retained nearly amorphous up to 600°C.
EN
Surface modification of medical implants is often required to improve their biocompatibility or, through bioactive properties of the surface material, facilitate its intergrowth with the living tissue. Bioactive-glass coatings can serve that purpose for the bone implants. We report a successful preparation of silicate-phosphate bioactive-glass coating on titanium substrate using the pulsed laser deposition method and present the coating characterization in terms of bonding configuration and chemical activity. The former was studied with high-resolution Raman microspectroscopy and revealed the presence of structural units responsible for the material's bioactivity. The bioactivity was also tested directly, in vitro, by soaking the samples in the simulated body fluid and examining the result with the Raman spectroscopy. The Raman spectrum, typical of hydroxyapatite was observed proving that the bone-like-material formed on the coating's surface.
EN
Subject of this study is surface modification of titanium with thin layers of carbon nanotubes, obtained via an electrophoretic deposition, as a means to improve metal's biocompatibility and provide a suitable matrix for very facile further modifications, if needed. Article presents a preliminary evaluation of the material, using goniometer, scanning electron microscopy and the Raman spectroscopy. The layer is found to be composed of randomly distributed, strongly adhered carbon nanotubes, introducing nanotopography to the surface of titanium. Biological studies were conducted with the human osteoblast-like cell line MG63. Biocompatibility of materials was evaluated using: (a) lactate dehydrogenase cytotoxicity test (LDH) and (b) γ -H2AX genotoxicity test (presence of DNA double strand breaks). Results confirmed non-toxic character of the tested materials. Moreover, carbon nanotubes layers enhanced the biocompatibility properties of titanium substrate - material with carbon nanotubes possessed lower cellular toxic properties even than pure titanium. The result of this preliminary study are very promising and may serve as a starting point for further studies, including further chemical or biological modification of the obtained materials.
4
Content available remote

Analysis of Human Lenses by Raman Microspectroscopy

76%
EN
A cataract is an opacity (clouding) of the normally clear lens which develops as a result of aging, metabolic disorders, trauma or heredity. The number of patients with cataract is increasing exponentially. This disease requires surgical intervention, to remove the cloudy lens and to introduce the eye lens polymer. In this work we will present analyses of degraded parts of human lens. Experimental materials were obtained from the lens removed during surgical intervention. These biological samples were measured using Almega XR Confocal Raman spectrometer (Thermo Scientific) with an excitation source of 785 nm laser line. The Raman vibrations in the spectral region of 650-1750 cm¯¹ were analyzed. The difference spectra revealed an excess of tryptophan, tyrosine, phenylalanine, β-sheet conformation, and molecules or molecular groups.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.