Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Assuming the low molecular reorientation approximation, the formulae for the third-order electric polarization induced in liquids composed of rigid noninteracting dipolar, symmetric-top molecules in spherical solvents were derived. Our medium is acted on by a strong external dc bias electric field superimposed on a weak ac electric field, and the classical Smoluchowski-Debye equation for rotational diffusion of the symmetric-top molecules is applied. In order to highlight the influence of the anisotropy of rotational diffusion tensor components and the orientation of permanent dipole moment of the molecule on the complex linear and nonlinear electric susceptibilities, we present three-dimensional plots of the linear and nonlinear dispersion and absorption spectra, for different values of the frequency of ac electric field.
EN
The graphical analysis of the influence of the rotational diffusion tensor anisotropy and the orientation of the permanent dipole moment on the linear and nonlinear dielectric relaxation is shown. The solution of Smoluchowski-Debye rotational diffusion equation for rigid, and noninteracting polar, symmetric-top molecules, in the "weak molecular reorientation approximation", was used. In order to highlight the influence of the symmetric shape of molecule, in comparison with classical, spherical-top Smoluchowski rotational diffusion, we present sets of Argand-type plots and three-dimensional Cole-Cole diagrams for linear and nonlinear electric susceptibilities. The results indicate that, in describing the nonlinear dielectric relaxation, the simplest spherical-top rotational diffusion model may be a sufficient approximation in some special cases only.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.