Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2007
|
vol. 54
|
issue 4
813-819
EN
Classical swine fever virus (CSFV) is often used as a surrogate model in molecular studies of the closely related hepatitis C virus. In this report we have examined the effect of the inhibition of glycosylation on the survival and maturation of CSFV. Viral glycoproteins (Erns, E1, E2) form biologically active complexes - homo- and heterodimers, which are indispensable for viral life cycle. Those complexes are highly N-glycosylated. We studied the influence of N-glycosylation on dimer formation using Erns and E2 glycoproteins produced in insect cells after infection with recombinant baculoviruses. The glycoproteins were efficiently synthesized in insect cells, had similar molecular masses and formed dimers like their natural counterparts. Surprisingly, the addition of tunicamycin (an antibiotic which blocks early steps of glycosylation) to insect cell culture blocked not only dimer formation but it also led to an almost complete disappearance of E2 even in monomeric form. Tunicamycin did not exert a similar effect on the synthesis and formation of Erns dimers; the dimers were still formed, which suggests that Erns glycan chains are not necessary for dimer formation. We have also found that very low doses of tunicamycin (much lower than those used for blocking N-glycosylation) drastically reduced CSFV spread in SK6 (swine kidney) cell culture and the virus yield. These facts indicate that N-glycosylation inhibitors structurally similar to tunicamycin may be potential therapeutics for the inhibition of the spread of CSFV and related viruses.
EN
Influenza A virus infections are the major public health concern and cause significant morbidity and mortality each year worldwide. Vaccination is the main strategy of influenza epidemic prevention. However, seasonal vaccines induce strain-specific immunity and must be reformulated annually based on prediction of the strains that will circulate in the next season. Thus, it is essential to develop vaccines that would induce broad and persistent immunity to influenza viruses. Hemagglutinin is the major surface antigen of the influenza virus. Recent studies revealed the importance of HA stalk-specific antibodies in neutralization of different influenza virus strains. Therefore, it is important to design an immunogen that would focus the immune response on the HA stalk domain in order to elicit neutralizing antibodies. In the present study, we report characterization of a conserved truncated protein, potentially a universal influenza virus antigen from the H5N1 Highly Pathogenic Avian Influenza A virus strain. Our results indicate that exposure of the HA stalk domain containing conserved epitopes results in cross reactivity with different antibodies (against group 1 and 2 HAs). Additionally, we conclude that HA stalk domain contains not only conformational epitopes recognized by universal FI6 antibody, but also linear epitopes recognized by other antibodies.
3
Content available remote

Expresion of animal virus genes using Baculovirus AcNPV

75%
|
|
vol. 40
|
issue 1
1-3
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.