Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
PL
Komosa ryżowa (Chenopodium quinoa Willd.) jest mało znaną rośliną z grupy pseudo-zbóż pochodzącą z Ameryki Południowej. Od ponad 5000 lat była uprawiana i czczona przez Indian, a niedawno zyskała nawet zainteresowanie NASA. Komosa ryżowa posiada bardzo pożądane właściwości odżywcze. Cechuje się miedzy innymi dużą zawartością białek i tłuszczy oraz korzystnym profilem aminokwasowym. Co więcej, posiada ona także właściwości prozdrowotne dzięki obecności witamin i polifenoli. Od wielu wieków była używana jako suplement diety lub substytut tradycyjnej żywności. Ponadto, ostatnie badania wskazują na potencjalne właściwości przeciwnowotworowe komosy, prawdopodobnie ze względu na zawartość związków fenolowych w jej tkankach. Ta niedoceniana i słabo znana roślina może w przyszłości stać się obiecującym źródłem suplementów żywności a z pewnością zasługuje na lepsze poznanie.
EN
Quinoa (Chenopodium quinoa Willd.) is a poorly known South-American plant which belongs to the group of pseudo-cereals. Cultivated for over 5000 years was not only a primary source of nourishment but also a worshipped plant for Indians. It possess desired nutritional and health-promoting features thanks to high content of proteins and fats, positive amino-acids profile but also presence of vitamins and polyphenols. For many centuries it has been used as a diet supplement or substitute of traditional, popular diet components. Because of quinoa's great nutritional properties it even acquired NASA recommendation. Moreover recent study shows that quinoa has potential anti-tumour properties, probably thanks to the phenolic compounds found in the plant tissues. Thanks to its nutritional value, but also health-promoting features quinoa seems to be a promising source of food supplementation which may become popular in the future.
|
2017
|
vol. 64
|
issue 3
445-449
EN
Connexin(Cx)43high cells are preferentially recruited to the invasive front of prostate cancer in vitro and in vivo. To address the involvement of Cx43 in the regulation of human prostate cancer DU145 cell invasiveness, we have analysed the nanoelasticity of invasive Cx43high sub-sets of DU145 cells by atomic force microscopy (AFM). The Cx43high DU145 cells displayed considerably higher susceptibility to mechanical distortions than the wild type DU145 cells. Transient Cx43 silencing had no effect on their elastic properties. Our data confirm the relationship between the invasive potential, Cx43 expression and nanoelasticity of the DU145 cells. However, they also show that Cx43 is not directly involved in the maintenance of DU145 invasive phenotype.
EN
Triterpene saponosides are widely distributed plant secondary metabolites characterized by relatively low systemic cytotoxicity and a range of biological activities. These include anti-inflammatory, antimicrobial, vasoprotective and antitumor properties. In particular, the ability of saponins to enhance the cytotoxicity of chemotherapeutic drugs opened perspectives for their application in combined cancer chemotherapy. Here, we used human prostate cancer DU-145 cells as an in vitro model to elucidate the synergy of the interactions between biological activities of an oleanane type 13β,28-epoxy triterpene saponoside (Lclet 4) and mitoxantrone, which is a cytostatic drug commonly used in prostate cancer therapy. No cytotoxic or pro-apoptotic effect of Lclet 4 and mitoxantrone administered at the concentrations between 0.05 and 0.1 µg/ml could be seen. In contrast, cocktails of these agents exerted synergistic pro-apoptotic effects, accompanied by the activation of the caspase 3/7 system. This effect was paralleled by attenuating effects of Lclet 4/mitoxantrone cocktails on the invasive potential, metalloproteinase expression and motility of DU-145 cells. Multifaceted and additive effects of Lclet 4 and mitoxantrone on basic cellular traits crucial for prostate cancer progression indicate that the combined application of both agents at systemically neutral concentrations may provide the basis for new promising strategies of prostate cancer chemotherapy.
EN
Triterpene saponins (saponosides) are found in a variety of higher plants and display a wide range of pharmacological activities, including expectorant, anti-inflamatory, vasoprotective, gastroprotective and antimicrobial properties. Recently, a potential anticancer activity of saponins has been suggested by their cytotoxic, cytostatic, pro-apoptotic and anti-invasive effects. At high concentrations (more than 100 µM) saponins exert cytotoxic and haemolytic effects via permeabilization of the cell membranes. Noteworthy, the inhibition of cancer cell proliferation, the induction of apoptosis and attenuation of cell invasiveness is observed in the presence of low saponin concentrations. Saponins might affect the expression of genes associated with malignancy. These alterations are directly related to the invasive phenotype of cancer cells and depend on "cellular context". It illustrates the relationships between the action of saponins, and the momentary genomic/proteomic status of cancer cells. Here, we discuss the hallmarks of anti-cancer activity of saponins with the particular emphasis on anti-invasive effect of diverse groups of saponins that have been investigated in relation to tumor therapy.
EN
Numerous adverse effects limit the applicability of mitoxantrone for the treatment of drug-resistant tumors, including carcinosarcoma. Here, we estimated the additive effects of mitoxantrone and curcumin, a plant-derived biomolecule isolated from Curcuma longa, on the neoplastic and invasive potential of carcinosarcoma cells in vitro. Curcumin augmented the cytostatic, cytotoxic and anti-invasive effects of mitoxantrone on the Walker-256 cells. It also strengthened the inhibitory effects of mitoxantrone on the motility of drug-resistant Walker-256 cells that had retained viability after a long-term mitoxantrone/curcumin treatment. Thus, curcumin reduces the effective doses of mitoxantrone and augments its interference with the invasive potential of drug-resistant carcinosarcoma cells.
EN
Cellular stress responses determine tissue development, homeostasis and pathogenesis. Paracrine signaling, exchange of mechanical stimuli and intercellular transfer of small metabolites via connexin-built gap junctional channels are involved in the cellular stress detection and propagation of stress stimuli in multicellular networks. Cellular stress responses are also regulated through the activity of unpaired connexons (hemichannels) and via the intracellular interference of connexins with the cell cycle and pro-apoptotic machinery. Therefore, connexins are considered as multidirectional transmitters of the "outside-in" and "inside-out" stress signaling that are crucial for tissue homeostasis, regeneration and pathology. In particular, the disturbance of connexin function during the multi-stage process of tumor development leads to abnormal reactions of tumor cells to stress stimuli. In this review, we outline the current knowledge on the multidirectional role of connexins in the detection of stress signals. We also discuss the role of connexin-mediated intercellular transmittance of stress signals in tumour promotion, progression and metastatic cascade. Highlights: 1. Connexins and gap junctions protect cells from the microenvironmental stress and are involved in propagation and intracellular processing of stress signals. 2. The quality and quantity of stress stimuli, which may lead to cell adaptation or death by apoptosis, is determined by intrinsic properties of connexins and the cell phenotype. 3. Connexin deficiency increases the resistance of tumor cells to the "outside-in" stress signaling. 4. The connexin-mediated "inside-out" stress signaling participates in tumor cell invasion during the metastatic cascade.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.