Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
ZnO films deposited by Atomic Layer Deposition (ALD) method at different growth conditions have required electron concentrations and electron mobilities for applications as n-type partners to ptype CdTe (ZnO layers with a reduced free electron concentration) and the transparent conductive oxide (TCO, metallic ZnO films). In the latter case their electrical properties are comparable to those of ITO and ZnO:Al (AZO) films obtained by a sputtering. We also demonstrate that ZnO films deposited by the ALD are suitable for construction of hybrid structures (semiconductor/organic material) for applications in novel photovoltaic (PV) panels based on organic materials (PV cells of the third generation).
EN
Calcination and microwave-assisted hydrothermal processing of precipitated zirconium dioxide are compared. Characterization of synthesized products of these two technologies is presented. The infiuence of thermal treatment up to 1200oC on the structural and spectroscopic properties of the so-obtained zirconium dioxide is examined. It was found that initial crystallization of material inhibits the crystal growth up to the 800oC (by means of XRD and TEM techniques), while the material crystallized from amorphous hydroxide precursor at 400oC, exhibits 26 nm sized crystallites already. It was found using the TG technique that the temperature range 100–200oC during the calcination process is equivalent to a microwave hydrothermal process by means of water content. Mass loss is estimated to be about 18%. Based on X-ray investigations it was found that the initial hydroxide precursor is amorphous, however, its luminescence activity suggests the close range ordering in a material.
EN
The introduction of an ultrathin zinc oxide (ZnO) layer formed by the atomic layer deposition (ALD) technique was found to improve the operation parameters of nickel phthalocyanine (NiPc) based photovoltaic cells with a transparent bottom electrode, indium tin oxide (ITO). This improvement is attributed to several reasons, such as I) increase of photovoltaic yield in ITO/p-NiPc/n-ZnO/Al cells incorporating a hybrid heterojunction as compared to single-layer ITO/NiPc/Al cells, II) enhancement of the overall spectral response in the double-layer cells and III) extension of long-term operational stability.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.