Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The aim of the present work was to examine the effect of the application of Spirulina platensis post-extraction residues enriched with Zn(II), Mn(II), Cu(II) via biosorption as micronutrient fertilizer for the biofortification of maize grains with micronutrients in field tests. As a nominal dose 2.5 kg ha-1 of zinc, 1.0 kg ha-1 of manganese and 0.5 kg ha-1 of copper were applied. The preparation was applied also in higher doses (150%, 200%) to investigate agronomic biofortification of maize grains. In field trials, obtained grain yield (7.2 Mg ha-1 for Spirulina 100%) was higher than in control group (6.2 Mg ha-1) and commercial reference product (6.6 Mg ha-1). For the same dose of micronutrients, their bioavailability was higher for bio-preparations than for reference fertilizer. The highest content of micronutrients delivered to plants (2.15 mg kg-1 – Cu, 7.07 mg kg-1 – Mn, 29.0 mg kg-1 – Zn) was observed for maize grains fertilized with preparation of Spirulina 150%, which signifies that biofortified maize grain was obtained. Corn grains biofortified with micronutrients can be used as staple food or feed preventing from micronutrient malnutrition. The application of micronutrient biocomponents based on Spirulina biomass allows to manufacture a valuable fertilizer with bioavailable micronutrients.
EN
Microwave Assisted Extraction (MAE) was used to obtain aqueous extracts of Baltic seaweeds. Three different temperatures: 25, 40, 60°C were examined. Algal extracts were characterized in terms of polyphenols, micro- and macroelements, lipids content and antibacterial properties. This is the first study that examines the effect of algal extract obtained by MAE in plant cultivation. The utilitarian properties were checked in the germination tests on Lepidium sativum for three dilutions of extract (0.5, 2.5 and 10%). Results showed that the content of polyphenols in extracts decreased with temperature, whereas the content of micro- and macroalements increased with temperature. The aqueous extracts did not contain fatty acids and did not show inhibitory effect on Escherichia coli and Staphylococcus aureus. Germination tests showed that plants in the experimental groups with an optimal concentration of extract had a higher height, weight, chlorophyll and micro- and macroelement content than plants in the control group. The algal extracts did not significantly influence the morphology of plants as shown in SEM pictures. Results show that algal extracts obtained by MAE have the highest potential applied in agriculture as biostimulants.
EN
Effect of the application of blackcurrant seed post-extraction residues (BS) enriched via biosorption with Zn(II), Mn(II) and Cu(II) was examined in field tests on maize. As a nominal dose (100%), 2.5 kg of zinc, 1 kg of manganese and 0.5 kg of copper per hectare, were applied. The preparation was applied, also, in higher doses (150%, 200%). Crop yield and quality were assessed and multielemental analysis of grains was conducted. Grain yield obtained for maize treated with different doses of micronutrients (7.3 and 7.2 Mg ha-1 for BS 100% and BS 200%, respectively) was higher than in control group (6.2 Mg ha-1) and similar to a commercial reference product (7.1 Mg ha-1). Bioavailability of micronutrients from BS was shown to be higher than from reference commercial fertilizer. The highest content of micronutrients delivered to plants was observed for groups fertilized with BS in nominal dose of micronutrients (1.79, 7.08 and 28.55 mg kg-1 for Cu, Mn and Zn, respectively). The content of each micronutrient was 5.6% (Cu) 12.1% (Mn) and 12.6% (Zn) higher than in untreated group and 8.9% (Cu) 9.7% (Mn) and 8.7% (Zn) higher than commercial reference micronutrient fertilizer. New biocomponents are cheap and biodegradable carriers of nutrients which can be released in controlled way.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.