Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The lignin peroxidase (LiP) catalyzed oxidation of pyrogallol red (PR) in the absence and presence of veratryl alcohol (3,4-dimethoxybenzyl alcohol, VA) was carried out in bis (2-ethylhexyl) sulfosuccinate sodium (AOT)/ polyoxyethylene lauryl ether (Brij30) reversed micelles to elucidate the role of VA. Results indicated that VA could accelerate the LiP catalyzed oxidation of PR, especially at low H2O2 concentrations. Unlike in bulk aqueous medium, the protection of LiP by VA in the present medium was relatively unsubstantial, even at high H2O2 concentrations. Analysis of data from a series of experiments showed that the enhancement of the PR oxidation caused by VA was mainly due to the indirect oxidation of PR by VA+∙ from the LiP catalyzed oxidation of VA. It was also found that at the same protector concentration (40 μM), VA (the physiological substrate of LiP) was less effective than PR (a phenolic compound) in protecting LiP from the H2O2 derived inactivation. This novel phenomenon deserves further study. [...]
EN
Yeast alcohol dehydrogenase (YADH) showed substantial decrease in its catalytic activity due to the strong electrostatic interaction between the head groups of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and YADH in AOT reverse micelles. However, the catalytic activity of YADH in a nonionic reverse micellar interface (GGDE/TX-100) obtained from a functional nonionic surfactant N-gluconyl glutamic acid didecyl ester (GGDE) and Triton X-100 (TX-100) was higher than that in AOT reverse micelle under the respective optimum conditions. A comparison of the kinetic parameters showed that the turnover number kcat in GGDE/TX-100 reverse micelle was 1.4 times as large as that in AOT reverse micelle, but the Michaelis constants in AOT reverse micelle for ethanol K mB was twice and for coenzyme NAD+ K mA was 5 times higher than their counterparts in GGDE/TX-100 reverse micelle. For the conversion of ethanol, the smaller K mB and larger kcat in GGDE/TX-100 reverse micelle resulted in higher catalytic efficiency kcat/K mB. The stability of YADH in GGDE/TX-100 reverse micelle was also found to be better than that in AOT reverse micelle. They were mainly attributed to the absence of electric charge on the head groups of GGDE and TX-100 in the GGDE/TX-100 reverse micelle. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.