Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2006
|
vol. 53
|
issue 4
721-727
EN
Previously we demonstrated that Ni(II) complexes of Ac-Thr-Glu-Ser-His-His-Lys-NH2 hexapeptide, representing residues 120-125 of human histone H2A, and some of its analogs undergo E-S peptide bond hydrolysis. In this work we demonstrate a similar coordination and reactivity pattern in Ni(II) complexes of Ac-Thr-Glu-Thr-His-His-Lys-NH2, its threonine analogue, studied using potentiometry, electronic absorption spectroscopy and HPLC. For the first time we present the detailed temperature and pH dependence of such Ni(II)-dependent hydrolysis reactions. The temperature dependence of the rate of hydrolysis yielded activation energy Ea = 92.0 kJ mol-1 and activation entropy ΔS≠ = 208 J mol-1 K-1. The pH profile of the reaction rate coincided with the formation of the four-nitrogen square-planar Ni(II) complex of Ac-Thr-Glu-Thr-His-His-Lys-NH2. These results expand the range of protein sequences susceptible to Ni(II) dependent cleavage by those containing threonine residues and permit predictions of the course of this reaction at various temperatures and pH values.
EN
Asymmetrical diadenosine 5',5''-P1P4 tetraphosphate (Ap4A) hydrolases are key enzymes controlling the in vivo concentration of Ap4A - an important signaling molecule involved in regulation of DNA replication and repair, signaling in stress response and apoptosis. Sequence homologies indicate that the genome of the model plant Arabidopsis thaliana contains at least three open reading frames encoding presumptive Ap4A hydrolases: At1g30110, At3g10620, and At5g06340. In this work we present efficient overexpression and detailed biochemical characteristics of the AtNUDX25 protein encoded by the At1g30110 gene. Aided by the determination of the binding constants of Mn(Ap4A) and Mg(Ap4A) complexes using isothermal titration calorimetry (ITC) we show that AtNUDX25 preferentially hydrolyzes Ap4A in the form of a Mn2+ complex.
EN
In Escherichia coli, heterologous production of Schizosaccharomyces pombe phytochelatin synthase (PCS) along with overproduction of E. coli serine acetyltransferase (SAT) and γ-glutamylcysteine synthase (γECS) was achieved and resulted in the accumulation of phytochelatins in bacterial cells. Overproduction of either γECS alone or simultaneous production of all three proteins in bacterial cells were accompanied by reduced growth rate in liquid cultures. Interestingly, bacteria overproducing either γECS or both SAT and γECS (with elevated level of γ-glutamylcysteine but not of phytochelatins) were able to accumulate more cadmium per dry weight than the control. However, the most efficient cadmium accumulation was observed in bacteria with elevated levels of all three proteins: SAT, γECS and PCS. Therefore, "pushing" the entire pathway might be the most promising approach in modification of bacteria for potential bioremediation purposes because the level of intermediates, cysteine and glutathione, can limit the rate of production of phytochelatins. However, in such bacteria other metabolic process might become limiting for efficient growth.
5
Content available remote

Coordination chemistry of glutathione

50%
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.