Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A method for the fast determination of yohimbine, a potent adrenoreceptor antagonist used for the treatment of sexual dysfunctions, is proposed in this article. MEKC under basic and acidic conditions (sodium borate, pH 9.5 and sodium phosphate, pH 2.5) with SDS was developed. The effect of the experimental parameters, e.g. pH, SDS concentration and injection time, on yohimbine migration was also studied. Both methods were validated in terms of linearity, limits of detection and quantification, accuracy, and precision using caffeine as an internal standard. The application for the determination of yohimbine in hand-made medicaments is also investigated in this study. [...]
EN
Abstract Separation of enantiomers represents an extremely important task in the field of analytical chemistry. This paper contributes to the field of the on-line preconcentration of enantiomers by developing a novel setup based on the electrokinetic accumulation of ketoprofen enantiomers on the pH boundary followed by enantioselective mobilization by a mixture of SDS, sulfated-β-cyclodextrin (S-β-CD), and trimethyl-β-cyclodextrin (TM-β-CD). Under the best conditions, where the injection electrolyte was composed of 50 mmol L−1 borate/NaOH pH 9.5 with 60% (v/v) methanol, the background electrolyte contained 50 mmol L−1 phosphate/NaOH pH 2.5, and the mobilization electrolyte consisted of 50 mmol L−1 phosphate/NaOH pH 2.5 with 4.0% (w/v) S-β-CD, 0.5% (w/v) TM-β-CD, and 20 mmol L−1 SDS, the determination of nanomolar concentration levels of ketoprofen enantiomers was successful by using micellar electrokinetic chromatography with a common UV detection. LODs were 2.5 nmol L−1 and 3.4 nmol L−1, which represent enhancement factors of 9921 and 8529, respectively. The method was also applied to the determination of ketoprofen enantiomers in waste water samples by using simple filtration as a clean-up step. Here, the recovery of ketoprofen enantiomers was 91% at the concentration level of 5×10−9 mol L−1. Graphical abstract [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.