Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Active LR Integrator Circuit with Ferrite Core

100%
EN
The paper presents the idea of active LR integrator circuit based on ferrite core. The LR topology, in contrast to contemporary RC, allow for drift-free operation of the integrator. Presented circuit is intended as main component of continuous operation fluxmeters and magnetoelastic transducers, especially working with low frequency signals. Critical component for proper frequency range and low signal distortion is the core material, which should allow for close-to-ideal inductance in the circuit. Presented simulation, measurement results, and total harmonic distortion analysis show that the proposed circuit works correctly.
EN
Current integrator systems usually use active RC integrator circuits. Crucial dificulty associated with this analogue system is the integrator drift. The following paper presents the idea of the active integrator circuit based on inductive and resistive components. This concept allows to eliminate the time drift of the circuit, which is undesired phenomenon resulting from capacitive components working in the traditional negative feedback loop. The SPICE simulations were performed to validate the presented idea. Then, prototype circuit with discrete components was tested. Inductors were based on nanocrystalline and air cores. The developed solution was tested as magnetoelastic sensors transducer, to confirm the ability for long-term, continuous, drift-free, integrator circuit operation. The results were compared with traditional, RC circuit with automatic drift compensation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.