Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Progressive supranuclear palsy (PSP) is a neurological disease leading to the damage of two brain structures: globus pallidus and substantia nigra. The pathomechanism of this disease is still unknown. One of the hypotheses is oxidative stress. Oxidative stress is an overproduction of free radicals in which iron may be involved. To verify the hypothesis that iron may play a role in PSP we performed the Mössbauer comparative studies of pathological and control tissues. Ten samples of PSP globus pallidus, ten samples of PSP substantia nigra, twelve control samples of globus pallidus and nine control samples of substantia nigra were measured in a conventional Mössbauer spectrometer at 90 K. The Mössbauer spectra obtained for all samples showed well resolved doublets with an isomer shift of 0.46±0.01 mm/s and a quadruple splitting of 0.70±0.02 mm/s. The main difference in these preliminary studies was in the concentration of iron. The concentration in PSP samples in globus pallidus was found to be 257±19 ng/mg tissue, compared to 183±22 ng/mg in control samples and 301±26 ng/mg in substantia nigra compared to 188±22 ng/mg in control samples. Taking into consideration that we did not notice any substantial increase in iron concentration in Parkinsonian substantia nigra compared to control substantia nigra, but a substantial increase in both substantia nigra and globus pallidus in PSP, may suggest that iron plays a different role in the pathomechanisms of PSP and of Parkinson's disease.
EN
Alzheimer disease is a neurodegenerative process of unknown mechanism taking place in a part of the brain - hippocampus. Oxidative stress and the role of iron in it is one of the suggested mechanisms of cells death. In this study several methods were used to assess iron and iron binding compounds in human hippocampus tissues. Mössbauer spectroscopy was used for identification of the iron binding compound and determination of total iron concentration in 12 control and one Alzheimer disease sample of hippocampus. Mössbauer parameters obtained for all samples suggest that most of the iron is ferritin-like iron. The average concentration of iron determined by Mössbauer spectroscopy in control hippocampus was 45±10 ng/mg wet tissue. The average concentration of iron in 10 Alzheimer disease samples determined by atomic absorption was 66±13 ng/mg wet tissue. The concentration of H and L chains of ferritin in 20 control and 10 AD hippocampi was assessed with enzyme-linked immuno-absorbent assay. The concentration of H and L ferritin was higher in Alzheimer disease compared to control (19.36±1.51 vs. 5.84±0.55 ng/μg protein for H, and 1.39±0.25 vs. 0.55±0.10 for L). This 3-fold increase of the concentration of ferritin is accompanied by a small increase of the total iron concentration.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.