Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2013
|
vol. 60
|
issue 4
817-822
EN
The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw < 4000 g/mol) was carried out in the same solvent system. Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and 31P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.
|
2014
|
vol. 61
|
issue 2
205-210
EN
The biodegradability and biocompatibility properties of ε-caprolactone homopolymers place it as a valuable raw material, particularly for controlled drug delivery and tissue engineering applications. However, the usefulness of such materials is limited by their low hydrophilicity and slow biodegradation rate. In order to improve polycaprolactone properties and functionalities, copolymerization of ε-caprolactone with δ-gluconolactone was investigated. Since enzymatic reactions involving sugars are usually hindered by the low solubility of these compounds in common organic solvents, finding the best reaction medium was a major objective of this research. The optimal copolymerization conditions were set up by using different organic media (solvent and solvents mixtures), as well as solvent free systems that are able to dissolve (completely or partially) sugars, and are nontoxic for enzymes. Native and immobilized lipases by different immobilization techniques from Candida antarctica B and Thermomyces lanuginosus have been used as biocatalyst at 80°C. Although the main copolymer amount was synthesized in DMSO:t-BuOH (20:80) medium, the highest polymerization degrees, up to 16 for the copolymer product, were achieved in solventless conditions. The products, cyclic and linear polyesters, have been characterized by FT-IR and MALDI-TOF MS analysis. The reaction product analysis revealed the formation of cyclic products that could be the major impediment of further increase of the chain length.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.