Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The temperature dependence of wettability (wetting angle, Θp(T)) for Ag-based melts on graphite and Al_2O_3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. The effect is also supported by the calculations based on the rigid band model, and is also in qualitative agreement with the Hume-Rothery rules. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al_2O_3 substrates. As a consequence, Θp(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θp(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.
EN
Inverse relation exists between the hardness and coercivity change within the whole period of structural relaxation in the investigated Fe-B(Si) based metallic glasses. This relation is independent of B-content and composition. This inverse relation is no more valid in binary Fe-B glasses after the onset of crystallization, when both the hardness and coercivity exhibit rapid increase. In contrast, the inverse relation was in FINEMET type glasses between these properties preserved in the first step of crystallization during the whole period of nanocrystallization.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.