Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The chemical composition of successive layers in a Co/Cu multilayered system was studied during growth with Auger electron spectroscopy. Experiments were carried out on a sample with 10 repetitions of Co(1 nm)/Cu(2 nm) evaporated at a very low deposition rate in ultrahigh vacuum. A very small amount of Bi or Pb (0.06 nm) was deposited on each Cu film in the system. The experimental data have shown that the concentration of Bi and Pb increases with the number of deposited trilayers up to coverage corresponding to 5 trilayers. At that point the concentration of the surfactant saturated. The changes in the surfactant concentrations are described with a simple model depicting the interaction of the surfactant atoms with the system and how the evolution of the segregation processes. It allows the prediction of the saturation concentration and helps to explain the behaviour of various elements used as a surfactant. The comparison between the theoretical predictions and the experimental results is also discussed.
2
Content available remote

AFM, XRD and HRTEM Studies οf Annealed FePd Thin Films

100%
EN
Ferromagnetic FePd L 1_{0} ordered alloys are highly expected as forthcoming high-density recording materials, because they reveal a large perpendicular magnetocrystalline anisotropy [1]. The value of the magnetic anisotropy of FePd alloy strongly depends on the alloy composition, degree of alloy order as well as on the crystallographic grain orientation. In particular, to obtain the perpendicular anisotropy, it is necessary to get the films with (001) texture. One of the successful methods, which allows one to obtain highly ordered alloy, is a subsequent deposition of Fe and Pd layers, followed by an annealing at high temperature. This paper presents the study of the FePd thin alloy film structure changing in the result of high temperature annealing. During the annealing in high vacuum, the measurements of electrical resistance were performed, indicating the regions of different structure evolution. Changes in the crystal structure and surface morphology induced by thermal treatment were investigated by X-ray diffraction, atomic force microscopy, as well as high resolution transmission electron microscopy and then compared with electrical resistivity measurement. The slow thermal annealing of the deposited layers leads to the formation of L 1_{0} ordered FePd alloy with preferred (111) grain orientation. After the annealing at the highest used temperature, the dewetting process was observed, resulting in a creation of well oriented, regular nanoparticles.
3
100%
EN
We simulated and experimentally investigated the formation of periodic structures generated by multibeam interference patterning. The simulations at the different setup geometry show that resulting interference pattern is quasi-periodical. The calculated patterns show that the symmetries of the interference maxima depend mostly on the angles of incidence and that a wide variety of patterns can be obtained. Because of the difficulty in aligning four beams sufficiently well to avoid secondary periodicities, for testing we used a three-beam interference configuration. Atomic force microscopy images showed good correspondence between the experimental and simulated interference image, with flat islands which correspond to the destructive interference and narrow channels which correspond to the constructive interference fringes.
4
84%
EN
The atomic environment of Bi atoms in the Co/Cu multilayered system was studied with X-ray absorption fine structure spectroscopy. Experiments were carried out on a Co(1 nm)/Cu(2 nm) system with 5 and 10 repetitions of Co/Cu evaporated with very low deposition rate in ultrahigh vacuum. A very small amount of Bi (0.06 nm) was deposited on each Cu film in the system. The X-ray absorption fine structure spectra were measured at the BiL_3 edge in the X-ray absorption near-edge structure and extended X-ray absorption fine structure ranges at the Beamline X1 of HASYLAB/DESY synchrotron laboratory in Hamburg. The experimental data showed different local neighbourhood of Bi, depending on the number of Co/Cu bilayer repetitions. The results are discussed in terms of the location and segregation of the Bi atoms as well as its possible oxidation ways.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.