Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Expression level of Ubc9 protein in rat tissues.

100%
EN
Ubc9 is a homologue of the E2 ubiquitin conjugating enzyme and participates in the covalent linking of SUMO-1 molecule to the target protein. In this report we describe a simple and efficient method for obtaining pure human recombinant Ubc9 protein. The purified Ubc9 retained its native structure and was fully active in an in vitro sumoylation assay with the promyelocytic leukaemia (PML) peptide as a substrate. In order to better understand the physiology of Ubc9 protein we examined its levels in several rat tissues. Immunoblot analyses performed on tissue extracts revealed quantitative and qualitative differences in the expression pattern of Ubc9. The Ubc9 protein was present at a high level in spleen and lung. Moderate level of Ubc9 was detected in kidney and liver. Low amount of Ubc9 was observed in brain, whereas the 18 kDa band of Ubc9 was barely visible or absent in heart and skeletal muscle. In heart and muscle extracts the Ubc9 antibodies recognized a 38 kDa protein band. This band was not visible in extracts of other rat tissues. A comparison of the relative levels of Ubc9 mRNA and protein indicated that the overall expression level of Ubc9 was the highest in spleen and lung. In spleen, lung, kidney, brain, liver and heart there was a good correlation between the 18 kDa protein and Ubc9 mRNA levels. In skeletal muscle the Ubc9 mRNA level was unproportionally high comparing to the level of the 18 kDa protein. The presented data indicate that in the rat the expression of the Ubc9 protein appears to have some degree of tissue specificity.
EN
In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10-8 M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10-11 M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10-8 M insulin comparing to cells grown in 10-11 M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.