Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L-1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L−1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results. [...]
EN
A cloud point extraction procedure for the preconcentration of copper, nickel, iron and zinc ions in various samples has been described. Analyte ions in aqueous phase are complexed with 3-((indolin-3-yl)(phenyl)methyl)indoline (IYPMI) and following centrifugation quantitatively extracted to the aqueous phase rich in Triton X-114. The surfactant-rich phase was dissolved in 2.0 mol L−1 HNO3 in methanol prior to metal content determination by flame atomic absorption spectrometry (FAAS). The effects of some parameters including, the concentrations of IYPMI, Triton X-114 and HNO3, bath temperature, centrifuge rate and time were investigated on the recoveries of analyte ions. At optimum conditions, the detection limits of (3 SDb m−1) of 1.6, 2.8, 2.1 and 1.1 ng mL−1 for Cu2+, Fe3+, Ni2+ and Zn2+ along with preconcentration factors of 30 and enrichment factor of 48, 39, 34 and 52 for Cu2+, Ni2+, Fe3+ and Zn2+ respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as biological, soil and blood samples with high efficiency. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.