Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Aging and longevity genes.

100%
|
2000
|
vol. 47
|
issue 2
269-279
EN
The genetics of aging has made substantial strides in the past decade. This progress has been confined primarily to model organisms, such as filamentous fungi, yeast, nematodes, fruit flies, and mice, in which some thirty-five genes that determine life span have been cloned. These genes encode a wide array of cellular functions, indicating that there must be multiple mechanisms of aging. Nevertheless, some generalizations are already beginning to emerge. It is now clear that there are at least four broad physiological processes that play a role in aging: metabolic control, resistance to stress, gene dysregulation, and genetic stability. The first two of these at least are common themes that connect aging in yeast, nematodes, and fruit flies, and this convergence extends to caloric restriction, which postpones senescence and increases life span in rodents. Many of the human homologs of the longevity genes found in model organisms have been identified. This will lead to their use as candidate human longevity genes in population genetic studies. The urgency for such studies is great: The population is graying, and this research holds the promise of improvement in the quality of the later years of life.
EN
The yeast Saccharomyces cerevisiae has a finite replicative life span. Yeasts possess two prohibitins, Phb1p and Phb2p, in similarity to mammalian cells. These proteins are located in the inner mitochondrial membrane, where they are involved in the processing of newly-synthesized membrane proteins. We demonstrate that the elimination of one or both of the prohibitin genes in yeast markedly diminished the replicative life span of cells that lack fully-functional mitochondria, while having no effect on cells with functioning mitochondria. This deleterious effect was suppressed by the deletion of the RAS2 gene. The expression of PHB1 and PHB2 declined gradually up to 5-fold during the life span. Cells in which PHB1 was deleted in conjunction with the absence of a mitochondrial genome displayed remarkable changes in mitochondrial morphology, distribution, and inheritance. This loss of mitochondrial integrity was not seen in cells devoid of PHB1 but possessing an intact mitochondrial genome. In a subset of the cells, the changes in mitochondrial integrity were associated with increased production of reactive oxygen species, which co-localized with the altered mitochondria. The mitochondrial deficits described above were all suppressed by deletion of RAS2. Our data, together with published information, are interpreted to provide a unified view of the role of the prohibitins in yeast aging. This model posits that the key initiating event is a decline in mitochondrial function, which leads to progressive oxidative damage that is exacerbated in the absence of the prohibitins. This aggravation of the initial damage is ameliorated by the suppression of the production of mitochondrial proteins in the absence of Ras2p signaling of mitochondrial biogenesis.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.