Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We present the results of numerical and experimental studies of the elastic enhancement factor W for microwave rough and rectangular cavities simulating two-dimensional chaotic and partially chaotic quantum billiards in the presence of moderate absorption. We show that for the frequency range ν=15.0-18.5 GHz, in which the coupling between antennas and the system is strong enough, the values of W for the microwave rough cavity lie below the predictions of random matrix theory and on average above the theoretical results of V. Sokolov and O. Zhirov, Phys. Rev. E 91, 052917 (2015). We also show that for the partially chaotic rectangular billiard the enhancement factor W calculated by applying the Potter-Rosenzweig model with κ=2.8±0.5 is close to the experimental one.
EN
We present investigation of a photodetector based on nitrogen-ion-implanted GaAs. Device photoresponse signal shows 1.15 ps FWHM (400 GHz, 3 dB bandwidth) with the voltage amplitude ≈ 1 mV, measured using a constructed electro-optic sampling setup with 80 fs width, 795 nm wavelength and laser pulses repetition rate of 80 MHz. Changes in the shape of electrical signal for different beam powers excitation and voltage biases have been demonstrated, compared with LT GaAs photodetector based on the same finger geometry. Using technique of X-ray diffraction and diffuse scattering analyses we have observed the decrease of lattice constant, radius of nanoclusters after implantation, respectively, and linear density dislocations increased over twice.
EN
We present experimental and numerical studies for level statistics in incomplete spectra obtained with microwave networks simulating quantum chaotic graphs with broken time reversal symmetry. We demonstrate that, if resonance frequencies are randomly removed from the spectra, the experimental results for the nearest-neighbor spacing distribution, the spectral rigidity and the average power spectrum are in good agreement with theoretical predictions for incomplete sequences of levels of systems with broken time reversal symmetry.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.