Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2008
|
vol. 6
|
issue 2
263-276
EN
The theoretical computation of the superconducting state parameters (SSP) viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ *, transition temperature T c, isotope effect exponent α and effective interaction strength N O V of some monovalent (Cu and Au), divalent (Ca, Sr, Ba, αHg, βHg and Ra) and polyvalent (Lu, Rh, Sc, Y, La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Ac, Th, Hf, Ru, Os, Ir, V, Ta, Pa, Cr, Mo, U, Re, Np and Pu) amorphous metals based on the different groups of the periodic table have been carried out for the first time using the well known Ashcroft’s empty core (EMC) model pseudopotential. Herein, we have employed five different types of local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) to study the exchange and correlation effects on the present investigations. A very strong influence of all the exchange and correlation functions have been observed in the present study. Our results are in fair agreement with documented theoretical as well as experimental data. A strong dependency of the SSP of amorphous metals on the valency Z was found.
EN
The theoretical investigations of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C, isotope effect exponent α and effective interaction strength N O V of six binary La100-C GaC (C = 16, 20, 22, 24, 26 and 28 at. %) metallic glasses have been reported using Ashcroft’s empty core (EMC) model potential for the first time. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. It is observed that the electron-phonon coupling strength λ and the transition temperature T C are quite sensitive to the selection of the local field correction functions, whereas the Coulomb pseudopotential μ*, isotope effect exponent α and effective interaction strength N O V show weak dependences on the local field correction functions. The T C obtained from H-local field correction function are found in qualitative agreement with available experimental data and show almost linear nature with the concentration (C) of ‘Ga’ element. A linear T C equation is proposed by fitting the present outcomes for H-local field correction function, which is in conformity with other results for the experimental data. Also, the present results are found to be in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the metallic glasses.
3
100%
Open Physics
|
2008
|
vol. 6
|
issue 2
238-252
EN
Ashcroft’s empty core (EMC) model potential is used to study the superconducting state parameters (SSPs) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C, isotope effect exponent αand effective interaction strength N O V of some binary metallic glasses based on the superconducting (S), conditional superconducting (S’) and non-superconducting (NS) elements of the periodic table. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time with EMC potential in the present investigation to study the screening influence on the aforesaid properties. The T C obtained from the H-local field correction function are in excellent agreement with available theoretical or experimental data. In the present computation, the use of the pseudo-alloy-atom model (PAA) was proposed and found successful. Present work results are in qualitative agreement with such earlier reported experimental values which confirm the superconducting phase in all metallic glasses. A strong dependency of the SSPs of the metallic glasses on the valence ‘Z’ is identified.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.