Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
TiO2 (B) and TiO2 anatase nanowires were prepared at 150 °C for 120 h by a hydrothermal method followed by calcination in air at 400 °C for 2 h and at 700 °C for 2 h for TiO2 (B) and TiO2 anatase, respectively. Although dye-sensitized solar cells (DSC) with fully nanowire electrodes showed a rather low light-to-electricity conversion efficiency of 1.33 % for TiO2 (B) and 2.42% for TiO2 anatase, 10 wt % nanowire-dispersed electrodes in a P-25 TiO2-nanoparticle matrix demonstrated improved efficiency of 6.17 % for TiO2 (B) and 6.53% for TiO2 anatase, these exceeding that of pure P-25 electrodes in this work (η=5.59%). The dominant mechanisms of the improvement at 10 wt% for the two different polymorphs are thought to be different, i.e., a light-scattering and film-thickness increment for the TiO2 (B) system, whereas there is an improved conduction path through the matrix for the TiO2 anatase system. [...]
EN
Partially nanowire-structured TiO2 was prepared by a hydrothermal processing followed by calcination in air. The hydrogen titanate powder as-synthesized was calcined at 300 °C for 4 h to obtain the partially nanowire-structured TiO2. A dye-sensitized solar cell (DSC) with a film thickness of 5.6 μm, fabricated using the partially nanowire-structured TiO2 showed better performance than using a fully nanowire-structured TiO2 or a conventional equi-axed TiO2 nanopowder. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF) and the overall efficiency (η) are 11.9 mA/cm2, 0.754 V, 0.673 and 6.01 %, respectively. The effects of one-dimensional nanostructure and electron expressway concept are discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.