Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 15

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Measurements of the magnetic properties, the electrical conductivity and the Seebeck effect were performed on single crystals (Cd_{x}Al_{y})[Cr_2]Se_{z} between 77 and 300 K. All samples have a ferromagnetic order with the Curie temperature of 130 K and the paramagnetic Curie-Weiss temperature of 155 K. Both these temperatures do not depend significantly on the Al substitution. The electrical conductivity of single crystals CdCr_2Se_4 doped with Al was p-type and showed the change of log σ versus 1/T slope above 150 K. This fact is interpreted as being due to the onset of impurity conduction and structural defects.
EN
The static (dc) and dynamic (ac) magnetic measurements of CdCr_2Se_4 and Cd[Cr_{1.89}Ti_{0.08}]Se_4 showed their ferromagnetic properties with a Curie temperature T_{C} ≈ 130 K and revealed on the real component of ac susceptibility curve, the peaks near T_{C} at 200 Oe, 450 Oe and 1 kOe, characteristic for the Hopkinson ones. The meaningful reduction of saturation moment to 4.73 μ_{B}/f.u. for Cd[Cr_{1.89}Ti_{0.08}]Se_4 suggests the diamagnetic configuration of Ti ions, which dilutes the ferromagnetic sublattice of Cr ones and causes reducing of the energy losses visible on the imaginary components of ac susceptibility curve. Close for zero values of higher susceptibility harmonics above T_{C} are pointing out to the lack of the spin fluctuations in the paramagnetic state.
EN
Single crystals of ZnCr_{2}Se_{4} spinel doped with vanadium were prepared by chemical vapour transport. The chemical compositions of three crystals have been determined by X-ray diffraction. The structure refinement using the SHELXL-93 program system determine the cation distribution in the system as ZnCr_{2-x}V_{x}Se_{4}. For x values equal to 0.03, 0.1 and 0.13 the observed symmetry was cubic, space group Fd3m. Based on the structural data, influence of the V ions on the magnetic and electrical properties has been analyzed.
EN
The electrical and complex ac dynamic magnetic susceptibility measurements were used to study an influence of temperature on critical fields in single-crystalline Zn_{x}Sb_{y}Cr_{z}Se_{4} spinel system with y = 0.11, 0.16 and 0.20. The p-type conduction and a shift both of the Néel temperature T_{N} to lower temperatures and a susceptibility peak at T_{m} in the paramagnetic region - to higher temperatures were established. Below T_{N} the magnetic field dependence of susceptibility, χ_{ac}(H), shows two peaks. First peak at the critical field H_{c1} slightly decreases with temperature and remains almost constant as Sb content increases. Second peak at the critical field H_{c2} drops rapidly with temperature and remains almost unchanged as Sb content increases. At T_{N} both critical fields disappear.
EN
The electrical and magnetic investigations carried out on the polycrystalline spinels with the general chemical formula Cd_{x}Cr_{y}V_{z}Se_{4} (where z = 0.06, 0.12, 0.24, and 0.31) revealed semiconducting and ferromagnetic properties with a Curie temperature of 127.5 K. A step-like structure of the electrical conductivity, σ(T), was observed for the polycrystal containing 6% V ions in the octahedral sites while the remaining samples showed a typical Arrhenius behaviour of σ(T). These effects are interpreted in terms of ferromagnetic spin clusters which finally dissolve on going towards the paramagnetic limit including non-stoichiometry.
EN
The complex ac dynamic magnetic susceptibility was used to study the mictomagnetic-like behavior in polycrystalline Cd_{0.87}Cr_{1.93}V_{0.06}Se_4 spinel. The temperature dependences of the zero field in-phase (real part) and out-of-phase (imaginary part) components of fundamental susceptibility measured at the oscillating field H_{ac} = 0.5 Oe and at the constant frequency of 125 Hz are characteristic for the mictomagnetic order. These results well correlate with the anomalies in the second and third harmonics of the ac susceptibility indicating the cluster glass.
EN
Taking into account both the dc magnetic susceptibility and the magnetization measurements as well as the high-temperature expansion of the magnetic susceptibility procedure the hopping integrals and superexchange integrals for the first and second coordination sphere were evaluated. The two hopping integrals are positive and many times greater than the superexchange ones. The obtained results testify to that in the stoichiometric compounds under study the double-exchange magnetic interaction is the main mechanism responsible for very strong, ferromagnetic coupling. Using the total hopping integral B the bandwidth of mixed valence band of chromium ions was determined.
EN
An antiferromagnetic order with a Néel temperature T_{N} = 17.5 K, a strong ferromagnetic exchange evidenced by a positive Curie-Weiss temperature θ_{CW} = 77.3 K, the fuzzy peaks in the real component of susceptibility χ'(T) and the disappearance of the second critical field were established. The curvature of specific heat C(T) and C(T)/T in surrounding of T_{N} indicated a broad peak, characteristic for the system with inhomogeneous magnetic state (spin-glass-like phase). The calculated magnetic entropy showed the value of S(T) ≈ 1 J/(mol K) which is extremely small; i.e., much lower than the magnetic contribution Rln(2S + 1) = 11.52 J/(mol K) calculated for the spin 3/2.
EN
Magnetization, M, and susceptibility, χ, measurements showed both strong lowering of magnetic moment in comparison with CuCr_2Se_4 matrix and zero-field-cooling-field-cooling susceptibility splitting characteristic for the spin-glass behaviour. Isothermal magnetization curves, M(H), easy saturate and large values both of the Curie T_{C}=253 K and Curie-Weiss θ=283.5 K temperatures indicate the ferromagnetic order which coexists with the spin-glass state. The critical behaviour investigated around the paramagnetic-ferromagnetic phase transition revealed that the values of critical exponents are close to those predicted by the mean field model for long-range magnetic interactions.
EN
Both the dc and ac magnetic susceptibilities as well as magnetization measurements were used to study the influence of the dilution of the magnetic chromium subarray by nonmagnetic antimony and aluminium ions on the magnetization processes for four spinel families under investigation. Substitution of the chromium ions by the nonmagnetic Sb and Al ions in the compounds under study leads to the very hard magnetization in the case of the compounds with Sb and very easy magnetization in the compounds with Al. This effect is connected with the electronic configurations of the Sb and Al ions as well as with ionic radii of these cations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.