Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2006
|
vol. 4
|
issue 2
246-257
EN
The partition behaviour of Hg (II) was studied in an aqueous polyethylene glycol (PEG) - (NH4)2SO4 two-phase system as a function of halide, halide concentration, and pH. For a system prepared by mixing equal volumes of 40 % (w/w) PEG (1550) with 40 % (w/w) (NH4)2SO4, Hg(II) remains almost exclusively in the salt-rich phase. The addition of NaX (X = Cl−, Br−, I−) enhances Hg (II) partition into the PEG-rich phase due to the formation of halide complexes. The efficiency of halide extractants increases in the order: Cl− < Br− < I−. Mercury extraction is improved at lower halide ion concentration by higher stock salt solution acidity. From the distribution coefficients determined as a function of halide ion concentration, the extracted species were identified. The Hg (II) extractability is determined by the type and stability of the Hg (II) halide species, and depends on the stock salt solution acidity. The observed behaviour is discussed and a possible extraction mechanism is proposed.
EN
Cd(II) plus iodide species were extracted into PEG-rich phases in the aqueous PEG(1550)-(NH4)2SO4 system at pH 2.05–7.12. IR spectra show that increasing (NH4)2SO4 solution acidity does not protonate PEG ether oxygen atoms, but decreases water content in the PEG-rich phases. Metallic species’ extraction into the PEG predominantly alters how water molecules bind to polymer chains; the changes in their absorption bands depend on pH. Microscopy shows that “fixation” of the extracted metal in the PEG-rich phase occurs by specific interactions which depend on the species. These also determine changes in the polymer chains’ conformation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.