Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The electronic structures of Alq₃/Si(111) and Alq₃/LiBr/Si(111) interfaces are presented in this report. The studies were carried out in situ in ultrahigh vacuum by ultraviolet photoelectron spectroscopy. Alq₃ and LiBr layers were vapour deposited onto a single crystal of n-type Si(111). The energy level diagrams were prepared for the structures. The formation of the LiBr interfacial layer results in a decrease of the energy barrier at the interface.
EN
The mobility of electrons in vertical transport in GaAs/Ga1−y AlyAs barrier structures was investigated using geometric magnetoresistance measurements in the dark. The samples studied had Ga1−y AlyAs (0 ≤ y ≤ 0:26) linearly graded barriers between the n+-GaAs contacts and the Ga0:74Al0:26As central barrier, which contain N w (=0, 2, 4, 7 and 10) n-doped GaAs quantum wells. The mobility was determined as functions of (i) temperature (80–290 K) at low applied voltage (0.01–0.1 V) and (ii) applied voltage (0.005–1.6 V) at selected temperatures in the range 3.5–290 K. The experimental results for the temperature dependence of low-field mobility suggest that space-charge scattering is dominant in the samples with N w=0 and 2, whereas ionized impurity scattering is dominant in the samples with N w=4, 7 and 10. The effect of polar optical phonon scattering on the mobility becomes significant in all barrier structures at temperatures above about 200 K. The difference between the measured mobility and the calculated total mobility in the samples with N w=4, 7 and 10, observed above 200 K, is attributed to the reflection of electrons from well-barrier interfaces in the quantum wells and interface roughness scattering. The rapid decrease of mobility with applied voltage at high voltages is explained by intervalley scattering of hot electrons.
EN
This paper presents an analytical model calculating the threshold voltage in nanocrystalline silicon (nc-Si) thin film transistors by considering a granular morphology of silicon nanocrystallites forming the channel and using the two-dimensional the Poisson equation. The numerical calculations demonstrate that, according to the quantum size effects on both dielectric constant and band gap, the threshold voltage values are strongly related to the silicon crystallites structure. To justify the validity of our model suitable for implementation in circuit simulators such as SPICE, the simulation results obtained are compared with the available research data and they shows a satisfactory match, thus, demonstrating the validity of our model.
EN
Methods to modify gate dielectrics of MIS structures by irradiation treatments and high-field electron injection into dielectric are considered. In addition, distinctive features of these methods used to correct parameters of MIS devices are studied. It was found out that negative charge, accumulating in the thin film of phosphosilicate glass (PSG) of the MIS structure having a two-layer gate dielectric SiO_2-PSG under the high-field injection or during the irradiation treatment can be used to correct the threshold voltage to improve the charge stability and raise the voltage of breakdown for the MIS devices. It is proved that the density of electron traps rises with the increasing thickness of the PSG film. In this paper a method to modify electrophysical characteristics of MIS structures by the high-field tunnel injection of electrons into the gate dielectric under the mode of controlled current stress is proposed. The method allows to monitor changing of MIS structure parameters directly during the modification process.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.