Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2012
|
vol. 10
|
issue 6
1766-1772
EN
A stable superhydrophobic surface of stearic acid grafted zinc was fabricated with two steps, that is, the zinc surface was firstly treated with glow discharge electrolysis plasma (GDEP) and then followed by a grafted reaction of stearic acid onto the treated zinc surface. Results indicated that the wettability of zinc substrate changed from superhydrophily to superhyphodrobicity with a water contact angle (CA) up to 158° and a water sliding angle (SA) less than 5°. The surface morphology and composition were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. [...]
Open Chemistry
|
2012
|
vol. 10
|
issue 4
1349-1359
EN
An acrylic acid/poly(ethylene glycol) (AAc/PEG) hydrogel was synthesized in aqueous solution by a simple one-step method using glow-discharge electrolysis plasma (GDEP) technique. The structure of AAc/PEG hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Factors influencing the adsorption of heavy-metal ions such as solution pH, contact time, initial heavy-metal ion concentration were examined systematically by batch experiments. Results showed that both chemical complexation and ion exchange played an important role for heavy-metal ion adsorption onto AAc/PEG hydrogel. The adsorption isothermals followed the Langmuir isotherm and the adsorption kinetics fitted the pseudo-second-order model at 25°C with a pH 6. In addition, AAc/PEG hydrogel can be also regenerated and re-used. [...]
Open Chemistry
|
2014
|
vol. 12
|
issue 12
1213-1221
EN
Non-equilibrium plasma makes it is possible to modify surface chemistry, synthetize polymer materials, and oxidize some organic compounds completely by generation of energetic and chemically active species in gas or liquid phases. Glow-discharge electrolysis plasma (GDEP) has been intensely studied for applications in chemistry and in material, environmental, and biomedical engineering during the last few years because of the very highly active chemical species produced during the glow-discharge electrolysis (GDE) process. A brief review is already available regarding applications of glow-discharge electrolysis plasma technique in chemistry and environmental science during the past decade. For convenience of discussion, some papers from prior years are also cited. The contents of this review are focused on the degradation of persistent pollutants, surface modification of materials, and preparation of functional polymers.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.