Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Photoluminescence of p-type modulation doped (Cd,Mn)Te quantum wells is studied with carrier density up to 5×10^{11} cm^{-2} at various spin splittings. This splitting can be made larger than the characteristic energies of the system thanks to the giant Zeeman effect. At small spin splitting and regardless of the carrier density, the photoluminescence exhibits a single line, which corresponds to the charged exciton in the singlet state. Above a certain spin splitting, the charged exciton is destabilized in favor of the exciton at vanishing hole density, and in favor of a double line at higher carrier density. It is found here that the charged exciton destabilization energy hardly depends on the carrier density. The double line is found to be band-to-band like, with the same initial state - where the holes have the same spin orientation - and final states that differ by some excitation of the 2D hole gas. In addition, the spin splitting needed to fully polarize the hole gas is twice smaller than expected from the single particle image and gives a unique insight into many-body effects in the hole gas.
2
Content available remote

Motional Enhancement of Exciton Magnetic Moments

100%
EN
The phenomenon in which giant enhancement of exciton magnetic moments occurs due to translational motion was found for light hole excitons in ZnTe/ZnMgTe quantum well structures. Decreasing diamagnetic shifts as the number of the exciton quantized state increases were found for the first time.
EN
New structures aiming at controlling the ferromagnetic properties of diluted magnetic semiconductor quantum wells are presented. The carrier density is controlled by applying a voltage across a p-i-n diode. A new method, creating a 2D hole gas by adjusting the distance between the quantum well and surface, offers opportunities for a broader range of structures.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.