Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2009
|
vol. 7
|
issue 4
677-689
EN
In this paper we consider the noncanonical Hamiltonian dynamics of a gyrostat in the three-body problem. By means of geometric mechanics methods, we study the approximate Poisson dynamics that arise when we develop the potential of the system in Legendre series and truncate this to an arbitrary order k. After reduction of the dynamics by means of the two symmetries of the system, we consider the existence and number of equilibria which we denominate of Lagrangian type, in analogy with classic results on the topic. Necessary and sufficient conditions are established for their existence in an approximate dynamics of order k, and explicit expressions for these equilibria are given, this being useful for the subsequent study of their stability. The number of Lagrangian equilibria is thoroughly studied in approximate dynamics of orders zero and one. The main result of this work indicates that the number of Lagrangian equilibria in an approximate dynamics of order k for k ≥1 is independent of the order of truncation of the potential, if the gyrostat S 0 is almost spherical. In relation to the stability of these equilibria, necessary and sufficient conditions are given for linear stability of Lagrangian equilibria when the gyrostat is almost spherical. In this way, we generalize the classical results on equilibria of the three-body problem and many results provided by other authors using more classical techniques for the case of rigid bodies.
EN
In this paper, we consider an integrable approximation of the planar motion of a gyrostat in Newtonian interaction with a spherical rigid body. We then describe the Hamiltonian dynamics, in the fibers of constant total angular momentum vector of an invariant manifold of motion. Finally, using the Liouville-Arnold theorem and a particular analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. The results can be applied to study two-body roto-translatory problems where the rotation of one of them has a strong influence on the orbital motion of the system.
Open Physics
|
2008
|
vol. 6
|
issue 3
754-758
EN
Among all the theories proposed to explain the “anomalous” perihelion precession of Mercury’s orbit first announced in 1859 by Le Verrier, the general theory of relativity proposed by Einstein in November 1915 alone could calculate Mercury’s “anomalous” precession with the precision demanded by observational accuracy. Since Mercury’s precession was a directly derived result of the full general theory, it was viewed by Einstein as the most critical test of general relativity from amongst the three tests he proposed. With the advent of the space age, the level of observational accuracy has improved further and it is now possible to detect this precession for other planetary orbits of the solar system - viz., Venus and the Earth. This conclusively proved that the phenomenon of “anomalous” perihelion precession of planetary orbits is a relativistic effect. Our previous papers presented the mathematical model and the computed value of the relativistic perihelion precession of Mercury’s orbit using an alternate relativistic gravitational model, which is a remodeled form of Einstein’s relativity theories, and which retained only experimentally proven principles. In addition this model has the benefit of data from almost a century of relativity experimentation, including those that have become possible with the advent of the space age. Using this model, we present in this paper the computed values of the relativistic precession of Venus and the Earth, which compare well with the predictions of general relativity and are also in agreement with the observed values within the range of uncertainty.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.